119 research outputs found

    Can we extract ultrahigh-temperature conditions from Fe-rich metapelites? An example from the Khondalite Belt, North China Craton

    Get PDF
    This work was financially supported by the National Natural Science Foundation of China (Grant Numbers 41430207 and 41172055) and China Scholarship Council.In this study, garnet–sillimanite gneisses at Hongshaba in the eastern segment of the Khondalite Belt, North China Craton (NCC) are interpreted to have experienced ultrahigh-temperature (UHT) metamorphism (980–1040 °C) followed by post-Tmax cooling at pressures of 8–9 kbar to the solidus (810–830 °C), consistent with rare sapphirine-bearing assemblages in surrounding regions. This interpretation is mainly based on the combination of P–T fields and garnet Xgr (=Ca/(Ca + Mg + Fe2+)) isopleths on the pseudosection of three garnet–sillimanite gneiss samples. Spinel tends to be enclosed in the outer margins of garnet, commonly closely associated with quartz. We interpret this to reflect the partial break down of garnet along the prograde path during heating with decompression followed by new garnet growth during cooling along an overall clockwise P–T evolution. Although Fe-rich UHT metapelites tend to contain neither diagnostic mineral assemblages nor orthopyroxene from which to extract T via Al-in-orthopyroxene thermometry, isopleths of Ca in garnet may aid in retrieving UHT conditions from these compositions. This is attributed to Ca diffusion in garnet being much slower than Fe and Mg diffusion, leading to little change in Ca contents during post-Tmax cooling. LA-ICP-MS U-Pb dating of metamorphic zircon in one garnet–sillimanite gneiss sample yields a mean 207Pb/206Pb age of ca. 1.91 Ga, which is interpreted to record the timing of cooling of the UHT rocks to the solidus. This UHT metamorphism is interpreted to have been generated by mantle-derived magma during a tectonic extension from ca. 1.95 to 1.92 Ga within a post-orogenic setting.PostprintPeer reviewe

    UHT Metamorphism Peaking Above 1100 °C with Slow Cooling: Insights from Pelitic Granulites in the Jining Complex, North China Craton

    Get PDF
    The peak temperature and duration of ultrahigh-temperature (UHT) metamorphism are critical to identify and understand its tectonic environment. The UHT metamorphism of the Jining complex in the Khondalite Belt, North China Craton is controversial on the peak temperature, time and tectonic setting. A representative sapphirine-bearing granulite sample is selected from the classic Tianpishan outcrop for addressing the metamorphic evolution and timing. The rock is markedly heterogeneous on centimetre scale and can be divided into melanocratic domains rich in sillimanite (MD-s) or rich in orthopyroxene (MD-o), and leucocratic domains (LD). On the basis of detailed petrographic analyses and phase equilibria modelling using THERMOCALC, all three types of domains record peak temperatures of 1120-1140 °C and a series of post-peak cooling stages at 0.8-0.9 GPa to the fluid-absent solidus (∼890 °C), followed by sub-solidus decompression. The peak temperature for MD-s is constrained by the coexistence of sillimanite-I + sapphirine + spinel + quartz, where sillimanite-I contains densely exsolved aciculae of hematite, yielding reintegrated Fe2O3 contents up to 2.1-2.3 wt %. The post-peak cooling evolution involves the sequential appearance of K-feldspar, sillimanite-II + garnet, orthopyroxene and biotite, where sillimanite-II is exsolution-free and contains variable Fe2O3 contents of 1.3-1.8 wt %. The peak temperature for MD-o is constrained by the sapphirine + orthopyroxene assemblage, where orthopyroxene has a maximum AlIV of 0.22 (Al2O3 = 9.5 wt %) in the core. The cooling evolution involves the sequential appearance of K-feldspar, garnet and biotite, and the decreasing AlIV (0.22→0.17) from core to rim in orthopyroxene. The peak temperature for LD is constrained by the inferred K-feldspar-absent assemblage and the maximum anorthite content of 0.11 in K-feldspar. The cooling evolution involves the crystallization of segregated melts, exsolution of supra-solvus ternary feldspars and growth of biotite. The Al in orthopyroxene, Fe2O3 in sillimanite and anorthite in K-feldspar are good indicators for constraining extreme UHT conditions although they depend differently on bulk-rock compositions. In-situ SHRIMP U-Pb dating of metamorphic zircon indicates that the UHT metamorphism may have occurred at >1.94 Ga and the cooling under UHT conditions lasted over 40 Ma. The extreme UHT metamorphism in the Jining complex is interpreted to be triggered by the advective heating of intraplate hyperthermal mafic magmas together with a plume-related hot mantle upwelling, following an orogenic crustal thickening event.This work was supported by the National Natural Science Foundation of China [grant numbers 41893083013 and 41872057]

    Long-lived melting of ancient lower crust of the North China Craton in response to paleo-Pacific plate subduction, recorded by adakitic rhyolite

    Get PDF
    Magmatism in eastern China in response to paleo-Pacific plate subduction during the Mesozoic was complex, and it is unclear how and when exactly the magmas formed via thinning and partial destruction of the continental lithosphere. To better understand this magmatism, we report the results of a geochronological and geochemical study of Early Cretaceous adakitic rhyolite (erupted at 125.4 ± 2.2 Ma) in the Xintaimen area within the eastern North China Craton (NCC). In situ zircon U-Pb dating shows that this adakitic rhyolite records a long (~ 70 Myrs) and complicated period of magmatism with concordant 206Pb/238U ages from 193 Ma to 117 Ma. The enriched bulk rock Sr-Nd isotopic compositions of the Xintaimen adakitic rhyolite, as well as the enriched zircon Hf and O isotopic compositions, indicate that the magmas parental to the adakitic rhyolite were derived from partial melting of the Paleoproterozoic mafic lower crust, heated by mafic melts derived from the mantle during the paleo-Pacific plate subduction. A minor older basement component is indicated by the presence of captured Neoarchean to Early Paleoproterozoic zircons. The Mesozoic zircons have restricted Hf and O isotopic compositions irrespective of their ages, suggesting that they formed from similar sources at similar melting conditions. The Xintaimen adakitic rhyolite offers an independent line of evidence that the ancient lower crust of eastern China underwent a long period (~ 70 Myrs) of destruction, melting or remelting, from ~ 193 to ~ 120 Ma, related to the subduction of the paleo-Pacific plate beneath eastern China

    CODA: A Real-World Road Corner Case Dataset for Object Detection in Autonomous Driving

    Full text link
    Contemporary deep-learning object detection methods for autonomous driving usually assume prefixed categories of common traffic participants, such as pedestrians and cars. Most existing detectors are unable to detect uncommon objects and corner cases (e.g., a dog crossing a street), which may lead to severe accidents in some situations, making the timeline for the real-world application of reliable autonomous driving uncertain. One main reason that impedes the development of truly reliably self-driving systems is the lack of public datasets for evaluating the performance of object detectors on corner cases. Hence, we introduce a challenging dataset named CODA that exposes this critical problem of vision-based detectors. The dataset consists of 1500 carefully selected real-world driving scenes, each containing four object-level corner cases (on average), spanning more than 30 object categories. On CODA, the performance of standard object detectors trained on large-scale autonomous driving datasets significantly drops to no more than 12.8% in mAR. Moreover, we experiment with the state-of-the-art open-world object detector and find that it also fails to reliably identify the novel objects in CODA, suggesting that a robust perception system for autonomous driving is probably still far from reach. We expect our CODA dataset to facilitate further research in reliable detection for real-world autonomous driving. Our dataset will be released at https://coda-dataset.github.io.Comment: ECCV 202

    Theory of Rare-earth Infinite Layer Nickelates

    Get PDF
    The recent discovery of superconductivity in oxygen-reduced monovalent nickelates has raised a new platform for the study of unconventional superconductivity, with similarities and differences with the cuprate high temperature superconductors. In this paper we discuss general trends of the infinite-layer nickelate RNiO2_2 with rare-earth R spanning across the lanthanide series. We determine that the role of oxygen charge transfer diminishes when traversing from La to Lu, with a prominent role played by rare-earth 5d electrons near the Fermi level. A decrease in lattice volume indicates that the magnetic exchange additionally grows, which may be favorable for superconductivity. However compensation effects from the itinerant 5d electrons present a closer analogy to Kondo lattices, indicating a more complex interplay between charge transfer, bandwidth renormalization, compensation, and magnetic exchange

    Topology Reasoning for Driving Scenes

    Full text link
    Understanding the road genome is essential to realize autonomous driving. This highly intelligent problem contains two aspects - the connection relationship of lanes, and the assignment relationship between lanes and traffic elements, where a comprehensive topology reasoning method is vacant. On one hand, previous map learning techniques struggle in deriving lane connectivity with segmentation or laneline paradigms; or prior lane topology-oriented approaches focus on centerline detection and neglect the interaction modeling. On the other hand, the traffic element to lane assignment problem is limited in the image domain, leaving how to construct the correspondence from two views an unexplored challenge. To address these issues, we present TopoNet, the first end-to-end framework capable of abstracting traffic knowledge beyond conventional perception tasks. To capture the driving scene topology, we introduce three key designs: (1) an embedding module to incorporate semantic knowledge from 2D elements into a unified feature space; (2) a curated scene graph neural network to model relationships and enable feature interaction inside the network; (3) instead of transmitting messages arbitrarily, a scene knowledge graph is devised to differentiate prior knowledge from various types of the road genome. We evaluate TopoNet on the challenging scene understanding benchmark, OpenLane-V2, where our approach outperforms all previous works by a great margin on all perceptual and topological metrics. The code would be released soon
    • …
    corecore