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ABSTRACT 

In this study, garnet–sillimanite gneisses at Hongshaba in the eastern segment of the 

Khondalite Belt, North China Craton (NCC) are interpreted to have experienced 

ultrahigh-temperature (UHT) metamorphism (980–1040°C) followed by post-Tmax 

cooling at pressures of 8–9 kbar to the solidus (810–830°C), consistent with rare 

sapphirine-bearing assemblages in surrounding regions. This interpretation is mainly 

based on the combination of P–T fields and garnet Xgr (=Ca/(Ca+Mg+Fe
2+

)) isopleths 

on the pseudosection of three garnet–sillimanite gneiss samples. Spinel tends to be 

enclosed in the outer margins of garnet, commonly closely associated with quartz. We 

interpret this to reflect the partial break down of garnet along the prograde path during 

heating with decompression followed by new garnet growth during cooling along an 

overall clockwise P–T evolution. Although Fe-rich UHT metapelites tend to contain 

neither diagnostic mineral assemblages nor orthopyroxene from which to extract T via 

Al-in-orthopyroxene thermometry, isopleths of Ca in garnet may aid in retrieving 

UHT conditions from these compositions. This is attributed to Ca diffusion in garnet 

being much slower than Fe and Mg diffusion, leading to little change in Ca contents 

during post-Tmax cooling. LA-ICP-MS U–Pb dating of metamorphic zircon in one 

garnet–sillimanite gneiss sample yields a mean 
207

Pb/
206

Pb age of ca. 1.91 Ga, which 

is interpreted to record the timing of cooling of the UHT rocks to the solidus. This 

UHT metamorphism is interpreted to have been generated by mantle-derived magma 

during a tectonic extension from ca. 1.95 to 1.92 Ga within a post-orogenic setting. 

 

Keywords: 

Khondalite Belt; North China Craton; phase equilibrium modelling; 

ultrahigh-temperature metamorphism; zircon geochronology 
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1. Introduction 

Ultrahigh-temperature (UHT) metamorphism is the most extreme type of 

thermally-driven regional-scale crustal metamorphism at temperatures exceeding 

900°C (Harley, 1998). Evidence for UHT conditions is generally retrieved from 

mineral assemblages formed in Mg-rich metapelites, such as sapphirine–quartz- or 

orthopyroxene–sillimanite-bearing assemblages (e.g. Harley, 2008; Kelsey, 2008), 

which are considered to be a diagnostic indicator of temperatures above 900°C (e.g. 

Harley, 1998; Hensen and Green, 1973), albeit with some important caveats involving 

the oxidation state of the rock (Taylor-Jones and Powell, 2010) and the presence of 

melt and K-feldspar (Diener et al., 2008). Furthermore, the Al2O3 content of 

orthopyroxene in metapelites can additionally be used to infer UHT conditions (e.g. 

Harley and Motoyoshi, 2000; Kelsey et al., 2003). However, Mg-rich metapelites are 

relatively rare in most granulite-facies terrains, being subordinate to more common 

aluminous Fe-rich metapelite. Unfortunately, the latter metapelites tend to contain 

neither diagnostic UHT assemblages nor orthopyroxene and the common 

garnet–sillimanite-bearing assemblage is stable over a large P–T field within 

pseudosections (e.g. White et al., 2002), which makes it difficult to retrieve UHT 

conditions from such rocks. In this case, precise Tmax conditions tend not to be easily 

obtained through phase equilibrium modelling and other methods, such as 

two-feldspar thermometry (e.g. Fuhrman and Lindsley, 1988) and trace element 

thermometry (e.g. Ferry and Watson, 2007; Tomkins et al., 2007), must be applied. 

Nevertheless, as some cations such as Ca
2+

 in garnet and plagioclase within Fe-rich 

metapelites shows similar low diffusion rate as Al
3+

 in orthopyroxene within Mg-rich 

metapelites (e.g. Chakraborty and Ganguly, 1992; Hollis et al., 2006; Spear and 
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Florence, 1992), there is still the potential to extract more detailed P–T information 

from Fe-rich metapelites using selected mineral composition isopleths from phase 

equilibrium modelling. The compositional limitations of diagnostic UHT assemblages 

and the relative rarity of UHT-sensitive compositions create a significant challenge in 

identifying metamorphism under UHT conditions and constraining the areal extent of 

such metamorphism. This has implications for the origin and tectonic setting of any 

UHT metamorphic terrain. For example, small localized areas of UHT metamorphism 

in larger non-UHT regions require only local thermal perturbations, which may be of 

little tectonic significance whereas extensive terrain-scale UHT conditions require 

significant thermal perturbations on a large, tectonically-significant, scale (e.g. Clark 

et al., 2011). 

This issue is well illustrated in the eastern sector of the Paleoproterozoic 

Khondalite Belt, which is part of the Western Block of the North China Craton (NCC) 

(Fig. 1), where both ‘normal’ (garnet–sillimanite) and UHT (sapphirine–quartz or 

orthopyroxene–sillimanite) metapelitic granulites occur. The ‘normal’ granulites are 

widespread (Fig. 1c). They are Fe-rich and characterized by 

garnet–sillimanite-bearing assemblages, which have been interpreted to record peak 

temperatures of ~850°C along clockwise P–T paths (e.g. Cai et al., 2014; Lu and Jin, 

1993; Wang et al., 2011). The UHT granulites only crop out in a few localities (Fig. 

1c). They are also rich in total Fe and commonly contain sapphirine and 

orthopyroxene but formed under oxidized conditions such that they have low 

proportions of Fe
2+

 (sapphirine-bearing granulites). The sapphirine-bearing rocks 

commonly occur with spinel-bearing garnet–sillimanite gneisses which formed under 

somewhat more reduced conditions. Overall, these rocks are interpreted to record 

temperatures above 950°C along clockwise P–T paths (Li and Wei, 2016, 2018; Yang 
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et al., 2014) or counterclockwise P–T paths (Liu et al., 2008, 2012; Santosh et al., 

2007a, 2009a, 2012; Shimizu et al., 2013; Zhang et al., 2012). It still remains unclear 

whether there are more garnet–sillimanite gneisses in this region recording UHT 

conditions and whether the evolution of the UHT rocks is clockwise or 

counterclockwise. 

In this study, we investigate the garnet–sillimanite gneisses at Hongshaba within 

the eastern Khondalite Belt, NCC (Fig. 1c). The goal is to determine the metamorphic 

P–T conditions of these Fe-rich metapelites using phase equilibrium modelling and 

determine the ability of such rocks to record meaningful UHT conditions. 

Additionally, we constrain the timing of the metamorphism via LA-ICP-MS zircon 

U–Pb dating. 

 

2. Geological setting 

The North China Craton is divided into the Archean to Paleoproterozoic Eastern and 

Western Blocks and three Paleoproterozoic orogenic belts, namely the Trans-North 

China Orogen, the Khondalite Belt and the Jiao–Liao–Ji Belt (e.g. Zhao et al., 2005). 

The Western Block is traditionally interpreted to have formed at ca. 1.95 Ga when the 

Yinshan and Ordos Blocks collided along the Khondalite Belt and the North China 

Craton is believed to have been amalgamated at ca. 1.85 Ga when the Western and 

Eastern Blocks collided along the Trans-North China Orogen (Fig. 1a; e.g. Zhao et al., 

1998, 2005, 2012). Nevertheless, recent studies show that the collision between the 

Western and Eastern Blocks may alternatively have occurred at ca. 1.95 Ga (Qian and 

Wei, 2016; Qian et al., 2013, 2015) and the large number of zircon ages of ca. 1.85 Ga 

obtained from granulite facies rocks could instead reflect the cooling and exhumation 

of these high-grade terranes (Wei et al., 2014; Zhang et al., 2013). 
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The E–W-striking Paleoproterozoic Khondalite Belt in the Western Block extends 

from Jining in the east, through Daqingshan–Wulashan, to Qianlishan–Helanshan in 

the west (Fig. 1b). The lithologies within the Khondalite Belt are mainly 

garnet–sillimanite/kyanite gneisses, quartzo-feldspathic gneisses, garnet quartzites, 

calc-silicate rocks, graphite-bearing metapelites and marbles associated with S-type 

granites, charnockites, TTG gneisses, mafic granulites and amphibolites (Condie et al., 

1992; Lu et al., 1992). The protoliths of the metasedimentary rocks are generally 

interpreted to represent stable continental margin deposits (e.g. Lu and Jin, 1993; Lu 

et al., 1992, 1996; Zhao et al., 2005), though others believe that they could have been 

deposited in cratonic basins (e.g. Condie et al., 1992; Zhai and Peng, 2007) or active 

continental margins (e.g. Dan et al., 2012). Their detrital zircons yield ages of 2.9–2.0 

Ga and the timing of the deposition is constrained to be after ca. 2.0 Ga (e.g. Dan et 

al., 2012; Dong et al., 2007, 2013; Wan et al., 2006). These supracrustal rocks are 

believed to record a complex history of high-grade metamorphism from >1.95 to ca. 

1.84 Ga (e.g. Dong et al., 2007, 2013; Li et al., 2011; Wan et al., 2006; Yin, 2010). 

Among the metasedimentary rocks, medium-pressure (MP) pelitic granulites 

characterized by the paragenesis garnet–sillimanite are dominant (e.g. Cai et al., 2014) 

while high-pressure (HP) pelitic granulites characterized by the paragenesis 

garnet–kyanite are mainly reported from Qianlishan–Helanshan (e.g. Yin, 2010; Zhou 

et al., 2010). Furthermore, small amounts of garnet–sillimanite gneisses containing 

kyanite inclusions within garnet grains are identified from Jining (e.g. Wang et al., 

2011; Wu et al., 2017). 

The Jining region in the eastern section of the Khondalite belt (Fig. 1b) is 

dominated by ‘normal’ pelitic granulites characterized by the paragenesis 

garnet–sillimanite (e.g. Cai et al., 2014; Lu and Jin, 1993; Wang et al., 2011) with 
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UHT pelitic granulites present only in a few localities (Fig. 1c), as mentioned above. 

Only the UHT metapelites at Tuguiwula and Xuwujia (e.g. Santosh et al., 2007a, 

2009a) contain the diagnostic UHT assemblage sapphirine–quartz, whereas the UHT 

rocks in other localities contain spinel occurring as inclusions within 

garnet/sillimanite (e.g. Liu et al., 2012; Yang et al., 2014; Zhang et al., 2012). 

Regarding zircon dating, within the Jining region, metamorphic zircons related to 

the ‘normal’ granulites yield ages of 1.98–1.96 Ga (Li et al., 2011), ca. 1.91 Ga (Cai 

et al., 2014) and 1.89–1.84 Ga (Jiao et al., 2013; Li et al., 2011; Wan et al., 2006), 

while metamorphic zircons in the UHT granulites yield ages of ca. 1.92 Ga (Li and 

Wei, 2018; Santosh et al., 2007b, 2009b, 2013) and ca. 1.88 Ga (Yang et al., 2014). 

Furthermore, S-type granites show crystallization ages of 1.92–1.90 Ga (Zhong et al., 

2007) and gabbronorites show crystallization ages of ca. 1.93 Ga (Peng et al., 2010). 

Hongshaba lies 25 km to the north of Liangcheng (Fig. 1c) where both 

garnet–sillimanite gneisses (Fig. 2a–c) and garnet-bearing S-type granites occur (Fig. 

2d). Regarding the appearance of garnet–sillimanite gneisses, they can range from 

leucocratic (Fig. 2a) to melanocratic varieties (biotite- and sillimanite-bearing; Fig. 

2b). Garnet-bearing leucosomes occur within the garnet–sillimanite gneisses (Fig. 2c), 

suggesting that partial melting occurred during the high-grade metamorphism. 

 

3. Petrography and mineral compositions 

Three garnet–sillimanite gneiss samples (J1448, J1542 and J1544) were collected 

from Hongshaba (Fig. 1c). Mineral compositions of these samples were determined 

using a JXA-8100 microprobe at Peking University under operating conditions of 15 

kV acceleration voltage and a 1.0 × 10
−8

 A current with a beam diameter of 2 μm. 

Natural and synthetic minerals from the SPI Company were used for standardization. 
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The analysis results are presented in Tables 1 and 2. Photomicrographs are shown in 

Fig. 3. 

All three samples of garnet–sillimanite gneiss in this study are similar with respect 

to their mineral assemblages and microstructures. They contain garnet, sillimanite, 

K-feldspar, quartz with minor amounts of spinel, biotite and plagioclase. Accessory 

minerals are predominantly rutile (matrix) and ilmenite (inclusion and matrix) in 

J1448 and J1544, whereas in J1542, rutile (matrix) is the predominant accessory 

mineral. 

Garnet commonly occurs as anhedral grains (2–8 mm across) and inclusions in 

garnet are predominantly biotite and quartz (Fig. 3a,d,g). Additionally, in J1448, 

spinel is also included in garnet (Fig. 3a,b). Garnet in J1448 contains 52–56% 

almandine (Alm) (Fe
2+

/(Fe
2+

+Mg+Ca+Mn), defined accordingly for other 

components), 40–43% pyrope (Pyr), 3.5–4.0% grossular (Grs) and 0.7–0.9% 

spessartine (Sps). Garnet in J1542 and J1544 has similar composition of 

Alm56–61Pyr35–41Grs2.5–2.7Sps0.7–1.0 and Alm58–61Pyr36–39Grs2.4–2.7Sps0.9–1.3 respectively. 

There is no significant difference in composition between the core and the rim of a 

single garnet grain. 

Sillimanite generally occurs as elongate prismatic crystals (0.2–1.6 mm) in the 

matrix. Some sillimanite grains include spinel (Fig. 3a,b,e,g). 

Biotite mainly occurs as irregular flakes (0.1–1.5 mm) in the matrix (Fig. 3c,e,f,h) 

and minor amounts of biotite occur within garnet grains (Fig. 3a,d,g). In all three 

samples, matrix-type biotite shows similar composition with XMg (=Mg/(Mg+Fe
2+

)) of 

0.67–0.75 and TiO2 of 3.66–5.33 wt% (Ti (pfu) = 0.20–0.29) (Fig. 4). Biotite 

inclusions show similar XMg of 0.77–0.84, but also show a wide TiO2 range of 

3.70–6.70 wt% (Ti (pfu) = 0.20–0.37) (Fig. 4). 
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Spinel commonly occurs as grains (0.1–1.1 mm) enclosed in the outer margins of 

garnet (Fig. 3a,b), in sillimanite (Fig. 3a,b) or in plagioclase within K-feldspar (Fig. 

3b) in J1448, and enclosed in sillimanite in J1542 (Fig. 3e) and J1544 (Fig. 3g). 

Spinel and quartz tend to be separated by thin rims of garnet and/or sillimanite (Fig. 

3a,b,e,g), thus spinel and quartz are inferred to have been in equilibrium near the peak 

conditions of metamorphism before being separated by garnet or sillimanite. Spinel 

shows XMg of 0.43–0.52 and ZnO of 2.21–3.04 wt% in J1448, XMg of 0.40–0.42 and 

ZnO of 5.10–6.88 wt% in J1542, and XMg of 0.35–0.36 and ZnO of 3.79–4.17 wt% in 

J1544. 

K-feldspar mainly occurs as medium-to-coarse-grained crystals (0.5–1.9 mm) in 

the matrix. In all three samples, K-feldspar shows similar composition with XOr 

(=K/(Ca+Na+K)) of 0.77–0.92. Plagioclase commonly occurs as medium-grained 

crystals (0.1–1.0 mm) in the matrix (Fig. 3f,h). It shows XAn (=Ca/(Ca+Na+K)) of 

0.37–0.38 in J1448 and 0.26–0.28 in J1542 and J1544. Additionally, in J1448, 

plagioclase also occurs as moats around spinel within K-feldspar (Fig. 3b) with XAn of 

0.41–0.43. Quartz mainly occurs as grains of 0.2–1.5 mm in the matrix. 

Based on the observations above, the peak assemblage of J1448 and J1544 is 

interpreted to contain g–sill–sp–ksp–q–ilm±pl±ru with melt, and their solidus 

assemblage is interpreted to contain g–bi–sill–ksp–pl–q–ru–ilm. Furthermore, the 

peak assemblage of J1542 is interpreted to contain g–sill–sp–ksp–q±pl±ru±ilm with 

melt, and the solidus assemblage is interpreted to contain g–bi–sill–ksp–pl–q–ru. 

 

4. Bulk-rock compositions 

The bulk-rock compositions of the three garnet–sillimanite gneiss samples (J1448, 

J1542 and J1544) were determined by ICP-OES analysis at China University of 
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Geoscience (Beijing) and the results are shown in Table 3. The Fe
3+

/Fe
T
 values were 

determined by Fe
2+

 titration. These three samples have similar compositions. They are 

all rich in SiO2 (61.81–65.05 wt%), Al2O3 (16.11–19.39 wt%) and K2O (2.88–3.42 

wt%), poor in CaO (0.60–0.99 wt%) with a molar Mg/(Mg+Fe
T
) of 0.44–0.46, 

indicating a Fe-rich pelitic protolith. Furthermore, the low measured Fe
3+

/Fe
T
 values 

(0.01–0.04) suggest that these rocks might once equilibrated at rather reduced 

conditions. 

 

5. Phase equilibrium modelling 

Phase equilibria were modelled for the three garnet–sillimanite gneiss samples (J1448, 

J1542 and J1544) in the NCKFMASHTO (Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2 

–H2O–TiO2–Fe2O3) system. This system provides a realistic approximation to the 

composition of the samples within which the effects of melt and Fe
3+

 may be assessed 

(e.g. White et al., 2007). Calculations were performed using THERMOCALC (Powell 

and Holland, 1988) with the internally consistent thermodynamic dataset, ds62, of 

Holland and Powell (2011). The a–x models of White et al. (2014a) were used for 

melt, garnet, biotite, cordierite and orthopyroxene, Holland and Powell (2003) for 

plagioclase and K-feldspar, White et al. (2000) for ilmenite–hematite and White et al. 

(2002) for spinel–magnetite. The bulk-rock compositions obtained by ICP-OES 

analysis were normalized in the NCKFMASHTO system (Table 4). The H2O contents 

were adjusted using T–MH2O diagrams to ensure that the final phase assemblages were 

stable just above the solidus (e.g. Korhonen et al., 2011, 2012; White et al., 2004). 

The O contents were determined by Fe
2+

 titration. 

 

5.1. Sample J1448 
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The P–T pseudosection for sample J1448 was calculated with quartz in excess over 

the P–T window of 700–1100°C/4–12 kbar (Fig. 5a). The fluid-absent solidus occurs 

at T of 810–840°C above 6 kbar. Mineral composition isopleths of Xgr 

(=Ca/(Ca+Mg+Fe
2+

)) and Xpy (=Mg/(Ca+Mg+Fe
2+

)) in garnet and XAn in plagioclase 

are plotted on the pseudosection. 

The inferred peak assemblage g–sill–sp–ksp–q–ilm–liq±pl±ru of sample J1448 can 

only correspond to a narrow band (g–sill–sp–ksp–pl–q–ilm–liq) at T >980°C and P >6 

kbar, highlighted in Fig. 5a and shown in detail in Fig. 5b. However, this P–T field 

may not reflect the peak P–T conditions as the measured spinels contain appreciable 

ZnO (Table 1) which is not considered in the model system. The stability of spinel in 

the rocks may thus extend to lower temperatures and higher pressures by at least 50°C 

and 1 kbar, based on the measured ZnO contents in the spinel in the rocks (e.g. 

Nichols et al., 1992). 

If spinel is ignored, the inferred peak assemblage g–sill–sp–ksp–q–ilm–liq±pl±ru 

corresponds to the g–sill–ksp–pl–q–ilm–liq±ru fields in Fig. 5a. These fields 

additionally match the measured Xgr (0.035–0.040) contents in garnet which yield P–T 

estimates of >860°C/ >7 kbar. The measured Xpy (0.40–0.43) in garnet and XAn 

(0.37–0.43) in plagioclase occur in biotite-bearing field and indicate somewhat lower 

P–T conditions of T <850°C and P = 7–9 kbar around the solidus. At a pressure of 8 

kbar, the predicted melt modes are 0.07 at 900°C and 0.16 at 1000°C. 

Mineral mode isopleths of garnet, sillimanite and spinel are also plotted on the 

pseudosection (Fig. 5a,b). Within the biotite- and spinel-absent fields 

(g–sill–ksp–pl–q–liq±ru±ilm), the modes of garnet and sillimanite slightly decrease 

with increasing temperature. Where spinel appears (g–sill–sp–ksp–pl–q–ilm–liq), 

garnet and sillimanite modes decrease significantly over a fairly narrow field with 
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increasing temperature (Fig. 5b). Although, the exact P–T conditions of this 

spinel-bearing field are uncertain due to the presence of ZnO in the rock, it is likely 

that the relative modal changes across it are approximately correct. This means that 

initial post-peak cooling at a pressure of ~8 kbar will lead to a considerable increase 

in the modes of garnet and sillimanite at the expense of spinel, consistent with the 

observation of spinel enclosed in garnet/sillimanite (Fig. 3a,b). Further cooling may 

cause the appearance of biotite at ~860°C above the solidus, which eventually gives 

the solidus assemblage g–bi–sill–ksp–pl–q–ru–ilm.  

 

5.2. Sample J1542 

The P–T pseudosection for sample J1542 was calculated with quartz in excess over 

the P–T window of 700–1100°C/4–12 kbar (Fig. 6a). The fluid-absent solidus occurs 

at T of 790–820°C above 6 kbar. 

The inferred peak assemblage g–sill–sp–ksp–q–liq±pl±ru±ilm of sample J1542 can 

only correspond to a narrow band (g–sill–sp–ksp–q–ilm–liq±pl) at high T >990°C and 

P >6 kbar in Fig. 6a. Similar to the discussion for sample J1448 above, this P–T field 

may not reflect the peak P–T conditions as the measured spinels contain an 

appreciable ZnO content. In this case, the inferred peak assemblage may correspond 

to the g–sill–ksp–q–liq±pl±ru±ilm fields in Fig. 6a. These fields match the measured 

Xgr (0.025–0.027) contents in garnet which yield P–T estimates of >890°C/ >7 kbar. 

The measured Xpy (0.35–0.41) in garnet and XAn (0.26–0.28) in plagioclase occur in 

biotite-bearing field and indicate somewhat lower P–T conditions of T <830°C and P 

= 7–9 kbar around the solidus. At a pressure of 8 kbar, the predicted melt modes are 

0.10 at 900°C and 0.21 at 1000°C. 

The topology of the mineral mode isopleths of garnet, sillimanite and spinel are 
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similar to those for sample J1448 (Fig. 6a,b). Initial post-peak cooling at a pressure of 

~8 kbar will lead to an increase in the modes of garnet and sillimanite at the expense 

of spinel, consistent with the observation that spinel is included in sillimanite (Fig. 3e). 

Further cooling may cause the appearance of biotite at ~850°C above the solidus, 

which eventually gives the solidus assemblage g–bi–sill–ksp–pl–q–ru. 

 

5.3. Sample J1544 

The P–T pseudosection for sample J1544 was calculated with quartz in excess over 

the P–T window of 700–1100°C/4–12 kbar (Fig. 7a). The fluid-absent solidus occurs 

at T of 800–820°C above 6 kbar. 

The inferred peak assemblage g–sill–sp–ksp–q–ilm–liq±pl±ru of sample J1544 can 

only correspond to a narrow band (g–sill–sp–ksp–pl–q–ilm–liq) at high T >970°C and 

P >6 kbar in Fig. 7a. Similar to the discussion for samples J1448 and J1542 above, 

this P–T field may not reflect the peak P–T conditions. In this case, the inferred peak 

assemblage may correspond to the g–sill–ksp–pl–q–ilm–liq±ru fields in Fig. 7a. These 

fields roughly match the measured Xgr (0.024–0.027) contents in garnet which yield 

P–T estimates of >840°C/ >7 kbar. The measured Xpy (0.36–0.39) in garnet and XAn 

(0.26–0.28) in plagioclase occur in biotite-bearing field and indicate somewhat lower 

P–T conditions of T <840°C and P = 7–9 kbar around the solidus. At a pressure of 8 

kbar, the predicted melt modes are 0.08 at 900°C and 0.16 at 1000°C. 

The topology of the mineral mode isopleths of garnet, sillimanite and spinel are 

similar to those for samples J1448 and J1542 (Fig. 7a,b). Initial post-peak cooling at a 

pressure of ~8 kbar will lead to an increase in the modes of garnet and sillimanite at 

the expense of spinel, consistent with the observation that spinel is included in 

sillimanite (Fig. 3g). Further cooling may cause the appearance of biotite at ~840°C 
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above the solidus, which eventually gives the solidus assemblage 

g–bi–sill–ksp–pl–q–ru–ilm. 

 

6. Zircon geochronology and Ti-in-zircon thermometry 

Garnet–sillimanite gneiss sample J1448 was selected for zircon dating. Zircon grains 

were separated by conventional heavy liquid and magnetic separation followed by 

hand-picking under a binocular microscope. Selected grains were mounted in epoxy 

resin, polished down to expose the grain center, photographed in transmitted and 

reflected light, and imaged using cathodoluminescence (CL). CL imaging was carried 

out at Peking University on a FEI PHILIPS XL30 SFEG SEM with 2-min scanning 

time at conditions of 15 kV and 120 μA. The zircon U–Pb dating and trace element 

analyses were performed synchronously using LA-ICP-MS at the Key Laboratory of 

Orogenic Belts and Crustal Evolution, Ministry of Education, Peking University. 

Zircon 91500 was used as the standard and the standard silicate glass NIST was used 

to optimize the machine (Wiedenbeck et al., 1995, 2004). U–Pb isotopic compositions 

and trace element concentrations were calculated using GLITTER 4.4 (Van 

Achterbergh et al., 2001) and calibrated using 
29

Si as an internal calibrant and NIST 

610 as an external standard. The age calculations and plotting of Concordia diagrams 

used ISOPLOT 3.0 (Ludwig, 2003). Analyses described as concordant refer to those 

with <10% discordance. Apparent zircon crystallization temperatures were calculated 

using the Ferry and Watson (2007) calibration of the Ti-in-zircon thermometer. 

Zircon grains in sample J1448 are mostly round to weakly elongate in shape. They 

are mostly structureless in CL images (Fig. 8), suggesting that they were formed 

during high-grade metamorphism (e.g Corfu et al., 2003). Several zircon grains 

exhibit separate cores and rims (Fig. 8); the cores are commonly structureless and the 
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rims are too narrow to analyze. Thirty-five analyses were made on thirty-five grains; 

all of them are concordant (see Fig. 9 and Table 5). They yield a spread of 
207

Pb/
206

Pb 

ages from 1944 ± 20 to 1870 ± 17 Ma, with a mean age of 1910 ± 6 Ma (MSWD = 

1.2, n = 35). Th/U ratios are 0.17–2.17, which are higher than those typically 

attributed to metamorphic zircons (e.g. Vavra et al., 1996) and they may reflect the 

presence of melt (e.g. Wan et al., 2006). The measured Ti concentrations correspond 

to apparent temperatures of 758–878°C with an average value of 838 ± 27°C (aTiO2 = 

1, aSiO2 = 1; Ferry and Watson, 2007). The aTiO2 and aSiO2 values are based on the 

presence of both rutile and quartz. 

 

7. Discussion and conclusion 

7.1. Evolution of the Paleoproterozoic metamorphism 

Based on the petrographic characteristics and on the calculated phase equilibrium of 

the garnet–sillimanite gneiss samples at Hongshaba in the eastern Khondalite Belt, 

NCC, UHT metamorphism can be infered with a post-Tmax cooling-dominated path, 

consistent with rare sapphirine-bearing assemblages in surrounding areas such as 

Tuguiwula and Xuwujia (Fig. 1c; e.g. Santosh et al., 2007a, 2009a). 

 

7.1.1. Peak P–T conditions 

The modelling results of our samples, using a combination of P–T fields and garnet 

Xgr isopleths are consistent with peak P–T conditions of the Paleoproterozoic 

metamorphism in excess of 900°C and likely up to to 980–1040°C at 8–9 kbar (Fig. 

10). Although the spinel-bearing fields suggest lower P and higher T conditions (Fig. 

10), the presence of significant ZnO in spinel (Tables 1 and 2) can extend the stability 

field of this mineral to higher P and lower T (closer to the peak P–T conditions 
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derived from the Xgr isopleths), thus making the use of the reconstructed 

spinel-bearing assemblages to constrain the peak conditions potentially unreliable. 

Furthermore, although spinel is ignored, the position of garnet Xgr isopleth will not 

move too much as spinel does not contain appreciable Ca
2+

 and is not likely to largely 

affect the mode of garnet. This is because in a ZnO-present system, spinel modes will 

likely remain low where spinel is stabilized by addition of small quantities of ZnO in 

the bulk-rock composition. Thus we expect the effect of ZnO on spinel to be 

analogous with the effect of MnO on garnet where garnet modes remain low until 

garnet would become stable in the MnO-free subsystems (White et al., 2014b). Taking 

Fig. 5 as an example, the predicted spinel modes at lower P in a ZnO-absent system 

(~7%) would be much higher than the predicted spinel modes at higher P in a 

ZnO-present system and the latter ones could be smaller than 2%, consistent with the 

observed minor amounts of spinel in the sample. In addition, regarding the melt 

volumes at peak conditions, the predicted melt modes are 0.16, 0.21 and 0.16 for 

samples J1448, J1542 and J1544 respectively at 1000°C and 8kbar. Though these 

modes may be a bit high with regard to the melt connectivity threshold (Rosenberg 

and Handy, 2005), they have little influence on the peak conditions predicted by 

pseudosection. 

The inferred peak conditions in this study are consistent with the results from 

previous studies in the Jining region (e.g. Jiao and Guo, 2011; Li and Wei, 2016, 2018; 

Liu et al., 2008, 2012; Santosh et al., 2007a, 2009a, 2012; Shimizu et al., 2013; Yang 

et al., 2014; Zhang et al., 2012). However, the inferred maximum peak temperature of 

~1100°C at Tuguiwula in Liu et al. (2008) and Santosh et al. (2012) might be an 

overestimation since it was based on a Fe
3+

-absent FMAS P–T grid, whereas, Fe
3+

 can 

reduce the stability of sapphirine to lower temperatures (e.g. Korhonen et al., 2012; Li 
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and Wei, 2018; Taylor-Jones and Powell, 2010; Wheller and Powell, 2014). 

Additionally, the inferred Tmax of 1050°C at Hongsigou (Yang et al., 2014), 1030°C at 

Heling’er (Liu et al., 2012) and 975°C at Xumayao (Zhang et al., 2012) might also be 

overestimations as they were only based on spinel–garnet–sillimanite-bearing peak 

assemblage fields within ZnO-absent pseudosections. Although UHT conditions may 

have been reached in more rocks than sapphirine-bearing granulites in the Jining 

region, not all the spinel-bearing garnet–sillimanite gneisses can be directly 

interpreted to have experienced UHT conditions via the occurrence of spinel unless 

more evidence (e.g. garnet Xgr isopleth) is provided. Caution should be taken when 

retrieving the peak temperatures of these rocks. 

 

7.1.2. Textural interpretation and P–T path 

Spinel is enclosed in the outer margins of garnet (Fig. 3a,b) or in sillimanite (Fig. 

3a,b,e,g). We interpret this texture to be a result of modal changes over the 

metamorphic history, which is illustrated in the simplified sketches in Fig. 11. In the 

period the pre-peak to peak stages (Fig. 11a → Fig. 11b), there was consumption of 

garnet and sillimanite and growth of spinel during heating and decompression, 

producing the inferred peak assemblage containing the paragenesis 

garnet–sillimanite–spinel. Subsequently, in the post-peak cooling stage (Fig. 11b → 

Fig. 11c), there was a reduction in the mode of spinel and an increase in the mode of 

garnet and sillimanite, producing the texture that spinel is included in garnet or 

sillimanite. In particular, due to the issue of garnet nucleation (e.g. White et al., 2002), 

spinel close to existing garnet is largely mantled by garnet which is connected to the 

earlier porphyroblast, in places via a narrow peninsula of garnet. Further growth of 

garnet tended to occur where garnet was previous consumed (at the garnet boundary), 
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which resulted in spinel (and/or quartz) enclosed in the outer margins of garnet as 

observed (Fig. 3a,b). By contrast, spinel distal to garnet porphyroblasts is more 

commonly enclosed in sillimanite, or rarely feldspar (Fig. 3a,b,e,g). 

According to the mineral mode isopleths shown in the pseudosections (Figs 5–7), 

an overall clockwise P–T path is required to make the inferred modal changes above 

possible, although the accurate metamorphic conditions of the prograde evolution 

cannot be determined. Nevertheless, a post-Tmax cooling path can be constrained at 

8–9 kbar from 980°C to fluid-absent solidus conditions (810–830°C) (Fig. 10). It 

should be noted that the average temperature of 838°C obtained from the Ti-in-zircon 

thermometer for sample J1448 is approximately consistent with its fluid-absent 

solidus condition shown in Fig. 5 (~830°C at 8 kbar), indicating that zircon growth 

may occur during cooling associated with melt crystallization (e.g. Kelsey and Powell, 

2011; Yakymchuk and Brown, 2014; Yakymchuk et al., 2017). 

As mentioned above, both clockwise (Li and Wei, 2016, 2018; Yang et al., 2014) 

and counterclockwise (Liu et al., 2008, 2012; Santosh et al., 2007a, 2009a, 2012; 

Shimizu et al., 2013; Zhang et al., 2012) P–T evolutions for the UHT metamorphism 

in the eastern Khondalite Belt, NCC have been proposed. Regarding the 

counterclockwise P–T path, the interpretation is mainly based on the inference that 

the peak sapphirine–quartz paragenesis in the Tuguiwula UHT rocks was preceded by 

a spinel–quartz paragenesis (e.g. Santosh et al., 2009a), which may indicate a pre-Tmax 

compression path according to the FMAS P–T grid in Harley (1998). However, the 

inference that spinel appears prior to sapphirine is arguable and further petrographic 

observations in Li and Wei (2018) suggest that these two minerals may coexist within 

the peak assemblage. This means that there might be no robust evidence for the 

counterclockwise P–T path. In this study, a clockwise P–T evolution is more likely. It 
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is also consistent with the evolution of the extensive ‘normal’ pelitic granulites in the 

Jining region, all of which have been interpreted to have clockwise P–T paths on the 

basis of the transition from kyanite to sillimanite (Fig. 12; e.g. Lu and Jin, 1993; 

Wang et al., 2011). In particular, a clockwise path is consistent with the evolution of 

UHT granulites at Zhaojiayao (Fig. 12; Li and Wei, 2016), which have been 

interpreted to have experienced pre-Tmax decompression based on plagioclase zoning 

with core–rim increasing XAn content. 

 

7.2. Extracting UHT conditions from Fe-rich metapelites through phase equilibrium 

modelling 

As discussed above, Fe-rich UHT metapelites tend to contain neither diagnostic 

mineral assemblages nor orthopyroxene from which to extract T via 

Al-in-orthopyroxene thermometry. Instead they contain the common 

garnet–sillimanite-bearing assemblages, which are stable in an extensive field within 

pseudosections, which makes it difficult for researchers to retrieve UHT conditions. 

Thus, precise Tmax conditions for Fe-rich UHT metapelites tend not to be easily 

obtained through phase equilibrium modelling. 

Nevertheless, in this study, UHT conditions have been retrieved from Ca in garnet 

isopleths within pseudosections (Figs 5–7). By contrast, Mg in garnet isopleths only 

record temperatures just above the solidus for each sample. This is attributed to Ca 

diffusion in garnet being much slower than Fe and Mg diffusion (e.g. Chakraborty and 

Ganguly, 1992), leading to little change in Ca contents during post-Tmax cooling. 

However, Ca in garnet in a single sample may not constrain the peak P–T conditions 

well. To refine the P–T estimate even further, the measured Xgr isopleths of the three 

samples can be overlapped, and the peak estimate for Tmax conditions occurs where 
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the Xgr isopleths from the different rocks overlap (Fig. 10). Another example can be 

found in Hollis et al. (2006), where Ca zoning is preserved in garnet within UHT 

metapelites. 

Additionally, it should be noted that contours of Ca in plagioclase only suggest 

temperatures above the solidi (Figs 5–7), seemingly inconsistent with the slow 

diffusion of Ca in plagioclase (e.g. Spear and Florence, 1992). However, this is likely 

because there is only little plagioclase of relatively small grain size in each sample. As 

pointed out by Spear and Florence (1992), if only a small proportion of plagioclase 

exists to re-equilibrate, the greater the extent its composition will change. Another 

typical example can be found in Li and Wei (2016), where plagioclase in the sample 

with the highest mode records pre-Tmax and UHT conditions within pseudosection, but 

plagioclase in the sample with the lowest mode only records near-solidus conditions. 

 

7.3. Tectonic implications 

7.3.1. Timing of the UHT metamorphism 

There are two opinions about the timing of the UHT metamorphism in the eastern 

Khondalite Belt, NCC: (i) ca. 1.92 Ga (Santosh et al., 2007b, 2009b, 2013); (ii) ca. 

1.88 Ga (Yang et al., 2014). 

In this study, metamorphic zircons give a mean 
207

Pb/
206

Pb age of ca. 1.91 Ga from 

garnet–sillimanite gneiss sample J1448 (Fig. 9). This age is inferred to record the 

post-Tmax cooling to the solidus (Fig. 10), based on the mean Ti-in-zircon temperature 

of 838°C, which is lower than the inferred peak temperature and is close to the solidus 

in pseudosection (Fig. 5). Mantle-derived mafic intrusions with crystallization ages of 

ca. 1.93 Ga, such as the Xuwujia gabbronorites (Peng et al., 2010), are assumed to 

advect heat for the UHT metamorphism during post-collisional extension (Zhao, 
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2009). In this case, there may be one prolonged UHT event occuring before ca. 1.92 

Ga (in this study; Li and Wei, 2016, 2018) and all the ages of ca. 1.92, 1.91 and 1.88 

Ga record post-peak cooling. 

Additionally, the UHT metamorphism must take place later than ca. 1.95 Ga as this 

is the age of the collision-related kyanite-bearing HP pelitic granulites in 

Qianlishan–Helanshan (Fig. 1b; Yin 2010; Zhou et al., 2010). The reports of 

1.97–1.92 Ga mafic magmatic events from Daqingshan (Fig. 1b; Wan et al., 2013) 

and the ca. 1.95 Ga granites which intruded into khondalites in Helanshan (Fig. 1b; 

Dan et al., 2012) may indicate that extension of the orogen had begun by ca. 1.95 Ga. 

Therefore, in this study, the timing of the peak stage of the UHT metamorphism is 

interpreted to be ca. 1.95–1.92 Ga. 

 

7.3.2. Tectonic regime for the UHT metamorphism 

The tectonic regime for the origin of the UHT rocks in the eastern Khondalite Belt, 

NCC is still controversial. Tectonic models include a plume event (e.g. Santosh et al., 

2008), ridge subduction (e.g. Peng et al., 2010; Santosh et al., 2012) and 

post-collisional mantle upwelling (e.g. Zhao, 2009; Li and Wei, 2018). 

In this study, the garnet–sillimanite gneisses at Hongsigou are interpreted to have 

experienced UHT metamorphism along a clockwise P–T path involving pre-Tmax 

decompression-heating and post-Tmax cooling (Fig. 12). The decompression-heating 

from kyanite-bearing phase assemblage fields, together with the discovery of HP 

pelitic granulites in Qianlishan–Helanshan (Yin 2010; Zhou et al., 2010) and 

garnet–sillimanite gneisses containing kyanite inclusions within garnet grains in 

Jining (Wu et al., 2017), suggests a crustal thickening event at >1.95 Ga (Li and Wei, 

2018). This thickening event is deduced to be followed by tectonic extension 
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beginning at ca. 1.95 Ga (e.g. Dan et al., 2012; Wan et al., 2013), during which the 

UHT metamorphic conditions were reached, in part as a result of heating by 

mantle-derived magma (Fig. 12). This extension correlates with emplacement of 

gabbronorites that have intrusion ages of ca. 1.93 Ga (Peng et al., 2010) and were 

likely generated in a post-orogenic setting. Subsequently, cooling of the UHT rocks is 

interpreted to begin at ca. 1.92 Ga, correlating with the occurrence of 1.92–1.90 Ga 

anatectic S-type granites (Zhong et al., 2007) and both ‘normal’ and UHT pelitic 

granulites with ages of 1.92–1.84 Ga (e.g. Cai et al., 2014; Li et al., 2011; Santosh et 

al., 2007b, 2009b, 2013; Wan et al., 2006; Yang et al., 2014) in the Jining region. 

According to this tectonic interpretation, the ‘normal’ and UHT pelitic granulites 

within the Jining region share a similar geodynamic evolution in which both follow a 

clockwise P–T evolution. 
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Figure and table captions 

Fig. 1. (a) Tectonic division of the North China Craton (modified after Zhao et al. 

(2005) and Cai et al. (2014)). (b) Tectonic subdivision of the Western Block into the 

Ordos and Yinshan Blocks, which are separated by the E–W-striking Paleoproterozoic 

Khondalite Belt (modified after Zhao et al. (2005)). (c) Geological map of the Jining 

region (modified after Guo et al. (2001)) showing UHT metapelite localities: (1) 

Tuguiwula (Li and Wei, 2018; Santosh et al., 2007a; Shimizu et al., 2013); (2) 

Xuwujia (Jiao and Guo, 2011; Li and Wei, 2018; Santosh et al., 2009a); (3) 

Hongsigou (Yang et al., 2014); (4) Zhaojiayao (Li and Wei, 2016); (5) Heling’er (Liu 

et al., 2012) and (6) Xumayao (Zhang et al., 2012) 

 

Fig. 2. Field photographs of garnet–sillimanite gneisses (a,b,c) and garnet-bearing 

S-type granites (d). (a) Gneisses that contain less melanocratic minerals (e.g. biotite, 

sillimanite) are light-coloured. (b) Gneisses that contain more melanocratic minerals 

are dark-coloured. (c) Garnet-bearing leucosomes occur within the gneisses 

 

Fig. 3. Photomicrographs of garnet–sillimanite gneisses. Boundaries of garnet grains 

are contoured by dashed line in (a), (b) and (d). (a) Spinel is included in sillimanite 

and in the outer margins of garnet (sample J1448). (b) Spinel is included in sillimanite, 

in the outer margins of garnet and in plagioclase within K-feldspar (sample J1448). (c) 
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Matrix mainly consists of sillimanite, K-feldspar, plagioclase, quartz and biotite 

(sample J1448). (d) Garnet porphyroblast has inclusions of biotite, quartz and 

fibrolitic sillimanite (sample J1542). (e) Sillimanite occurs as columnar crystals in the 

matrix with inclusions of spinel (sample J1542). (f) Matrix mainly consists of 

sillimanite, K-feldspar, plagioclase, quartz and biotite (sample J1542). (g) Spinel is 

included in columnar sillimanite in the matrix (sample J1544). (h) Matrix mainly 

consists of sillimanite, K-feldspar, plagioclase, quartz and biotite (sample J1544). The 

mineral abbreviations are as follows: bi – biotite; g – garnet; ilm – ilmenite; ksp – 

K-feldspar; pl – plagioclase; q – quartz; ru – rutile; sill – sillimanite; sp – spinel 

 

Fig. 4. Ti (pfu) – Mg/(Mg+Fe
2+

) diagram showing biotite compositions in this study 

 

Fig. 5. (a) P–T pseudosection with proposed P–T path for sample J1448. (b) Blowup 

showing changes in mineral modes. The mineral abbreviations are as follows: cd – 

cordierite; ky – kyanite; liq – silicate liquid/melt; opx – orthopyroxene; other 

abbreviations are the same as those in Fig. 3. The composition used for modelling is 

listed in Table 4 

 

Fig. 6. (a) P–T pseudosection with proposed P–T path for sample J1542. (b) Blowup 

showing changes in mineral modes. Other details are the same as those in Fig. 5 

 

Fig. 7. (a) P–T pseudosection with proposed P–T path for sample J1544. (b) Blowup 

showing changes in mineral modes. Other details are the same as those in Fig. 5 

 

Fig. 8. Cathodoluminescence (CL) images of selected zircons in sample J1448. 
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Circles illustrate positions of LA-ICP-MS analytical sites with their identification 

numbers as in Table 5 

 

Fig. 9. Concordia diagrams showing LA-ICP-MS U–Pb data of sample J1448 

 

Fig. 10. P–T evolution of the garnet–sillimanite gneisses at Hongshaba. The solidus 

assemblage fields for samples J1448, J1542 and J1544 are labelled with (1), (2) and (3) 

respectively 

 

Fig. 11. Inferred textural development and modal changes of the Hongshaba 

metapelites. As the textures mostly involve garnet, spinel, sillimanite and quartz, only 

these minerals are shown in the simplified sketches 

 

Fig. 12. P–T paths for the ‘normal’ pelitic granulites are labelled with (1) (Wang et al., 

2011) and (2) (Cai et al., 2014) from the Jining region and the P–T path for the HP 

pelitic granulites is labeled with (3) (Yin, 2010) from the Qianlishan–Helanshan area. 

The P–T paths for the UHT pelitic granulites are labelled with (4) (Li and Wei, 2016), 

(5) (Li and Wei, 2018), (6) (Santosh et al., 2012), (7) (Shimizu et al., 2013), (8) (Liu 

et al., 2008) and (9) (Yang et al., 2014) from the Jining region. The P–T path in this 

study is labeled with (10). The abbreviations are as follows: NG – ‘normal’ granulites; 

UHTG – ultrahigh-temperature granulites; E-HPG – eclogite–high-pressure granulites. 

The effective sub-aluminous pelite solidus and areas of NG, UHTG and E-HPG are 

cited from Brown (2007). The transition lines of Al2SiO5 were calculated using 

THERMOCALC 
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Table 1 Representative mineral analyses for samples J1448 and J1542 

Table 2 Representative mineral analyses for sample J1544 

Table 3 Bulk-rock compositions of garnet–sillimanite gneiss samples in this study 

(wt%) 

Table 4 Molar proportions used for phase equilibrium modelling (mol.%) 

Table 5 Zircon U–Pb isotope data, Ti-concentration in zircons and calculated 

temperatures using the Ti-in-zircon thermometer 
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Table 1 Representative mineral analyses for samples J1448 and J1542 

 

J1448 
 

J1542 

Mine

ral 

g bi-

G 

bi ksp pl pl-

SP 

sp 
 

g bi-

G 

bi ksp pl sp 

SiO2 39.7

2  

38.

98  

38.

15  

64.

61  

57.9

3  

57.

39  

0.0

3  
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72  

37.

37  

38.

40  

64.

96  

61.

00  

0.0

4  TiO2 0.02  3.9

7  

5.0

8  

0.0

6  

0.05  0.0

0  

0.0

2  
 

0.0

2  

6.7

0  

3.7

9  

0.0

4  

0.0

0  

0.0

0  Al2O3 22.2

5  

15.

53  

15.

66  

18.

43  

27.4

0  

26.

74  

61.

19  
 

21.

88  

15.

08  

15.

05  

18.

55  

24.

32  

59.

74  Cr2O3 0.05  0.0

7  

0.0

1  

0.0

5  

0.07  0.0

4  

0.3

0  
 

0.0

1  

0.0

5  

0.0

1  

0.0

2  

0.0

0  

0.5

8  FeO
T
 25.5

0  

6.8

3  

11.

60  

0.1

0  

0.05  0.1

2  

23.

56  
 

27.

21  

8.6

4  

10.

84  

0.0

6  

0.0

6  

24.

92  MnO 0.43  0.0

2  

0.0

2  

0.0

4  

0.04  0.0

7  

0.0

4  
 

0.3

8  

0.0

1  

0.0

4  

0.0

0  

0.0

0  

0.0

3  MgO 11.3

6  

19.

02  

15.

59  

0.0

0  

0.01  0.0

0  

11.

39  
 

10.

21  

16.

52  

16.

79  

0.0

0  

0.0

1  

8.9

7  CaO 1.35  0.0

7  

0.0

7  

0.2

4  

8.05  8.9

2  

0.0

0  
 

0.9

6  

0.0

5  

0.0

3  

0.2

2  

5.8

3  

0.0

3  Na2O 0.04  0.2

2  

0.1

4  

1.5

8  

7.10  6.4

2  

0.0

0  
 

0.0

3  

0.2

6  

0.1

1  

1.7

0  

8.1

5  

0.0

0  K2O 0.03  9.4

1  

9.3

4  

14.

42  

0.17  0.0

9  

0.0

0  
 

0.0

2  

9.1

0  

9.2

7  

13.

96  

0.1

5  

0.0

0  NiO 
      

0.3

2  
      

0.1

9  ZnO 
      

2.6

8  
      

5.1

0  Total 100.

75  

94.

12  

95.

66  

99.

53  

100.

87  

99.

79  

99.

53  
 

99.

44  

93.

78  

94.

33  

99.

51  

99.

52  

99.

60  O 12 11 11 8 8 8 4 
 

12 11 11 8 8 4 

Si 2.99  2.8

2  

2.7

8  

2.9

9  

2.57  2.5

8  

0.0

0  
 

2.9

8  

2.7

5  

2.8

3  

2.9

9  

2.7

2  

0.0

0  Ti 0.00  0.2
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0.2
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0.0
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0.00  0.0
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0.0

0  
 

0.0

0  
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7  

0.2

1  

0.0

0  

0.0

0  

0.0

0  Al 1.98  1.3
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1.3

5  

1.0

0  

1.43  1.4

2  

1.9

4  
 

1.9

9  

1.3

1  

1.3
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1.0
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1.9

4  Cr 0.00  0.0
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0.00  0.0
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0.0
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0.0
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0.0
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0.0
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0.0
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0.0

1  Fe
3+
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0  

0.0
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0.00  0.0
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0.0

5  
 

0.0
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0.0
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0.0
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0.0
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0.0
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0.0

5  Fe
2+

 1.56  0.4
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0.0

0  
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1.6

9  

0.5
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0.5

3  Mn 0.03  0.0
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0.0
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0.0
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X(g) = Mg/(Fe
2+

 + Mg + Ca); X(bi, sp) = Mg/(Mg + Fe
2+

); X(pl) = Ca/(Ca + Na + K); X(ksp) = 

K/(Ca + Na + K); Y(g) = Ca/(Fe
2+

 + Mg + Ca); -G, within garnet grains; -SP, around spinel. The 

mineral abbreviations are the same as those in Fig. 3 
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Table 2 Representative mineral analyses for sample J1544 

 

J1544 

Mineral g bi-G bi ksp pl sp 

SiO2 38.64  38.46  37.17  64.96  61.24  0.05  

TiO2 0.00  4.15  4.97  0.11  0.00  0.03  

Al2O3 21.70  14.74  14.95  18.61  23.98  56.44  

Cr2O3 0.00  0.12  0.03  0.02  0.01  0.98  

FeO
T
 27.93  8.73  11.95  0.00  0.02  30.12  

MnO 0.50  0.01  0.00  0.04  0.02  0.07  

MgO 10.03  18.45  15.62  0.00  0.00  7.75  

CaO 0.89  0.00  0.00  0.13  5.57  0.00  

Na2O 0.00  0.19  0.15  1.75  8.26  0.00  

K2O 0.00  9.25  9.47  13.58  0.21  0.01  

NiO 
     

0.17  

ZnO 
     

3.86  

Total 99.69  94.10  94.31  99.20  99.31  99.49  

O 12 11 11 8 8 4 

Si 2.98  2.82  2.77  2.99  2.74  0.00  

Ti 0.00  0.23  0.28  0.00  0.00  0.00  

Al 1.97  1.27  1.31  1.01  1.26  1.86  

Cr 0.00  0.01  0.00  0.00  0.00  0.02  

Fe
3+

 0.08  0.00  0.00  0.00  0.00  0.11  

Fe
2+

 1.72  0.53  0.74  0.00  0.00  0.60  

Mn 0.03  0.00  0.00  0.00  0.00  0.00  

Mg 1.15  2.01  1.73  0.00  0.00  0.32  

Ca 0.07  0.00  0.00  0.01  0.27  0.00  

Na 0.00  0.03  0.02  0.16  0.72  0.00  

K 0.00  0.86  0.90  0.80  0.01  0.00  

Ni 
     

0.00  

Zn 
     

0.08  

X(phase) 0.39  0.79  0.70  0.83  0.27  0.35  

Y(phase) 0.02       

Details are the same as those in Table 1 
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Table 3 Bulk-rock compositions of garnet–sillimanite gneiss samples in this study (wt%) 

Sample SiO2 TiO2 Al2O3 Fe2O3
T
 MnO MgO CaO Na2O K2O P2O5 LOI Total Fe

3+
/Fe

T
 Mg/(Mg+Fe

T
) 

J1448 65.05 0.78 16.11 8.98 0.11 3.61 0.99 0.76 2.88 0.05 0.38 99.70 0.04 0.44 

J1542 64.06 0.71 19.39 6.83 0.06 2.95 0.60 1.11 3.42 0.01 1.12 100.27 0.03 0.46 

J1544 61.81 0.88 18.20 8.74 0.09 3.40 0.95 1.52 3.36 0.11 0.18 99.23 0.01 0.44 

Fe
3+

/Fe
T
 values are determined by Fe

2+
 titration 
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Table 4 Molar proportions used for phase equilibrium modelling (mol.%) 

Sample H2O SiO2 Al2O3 CaO MgO FeO K2O Na2O TiO2 O 

J1448 0.93 70.85 10.34 1.08 5.86 7.36 2.00 0.80 0.64 0.14 

J1542 1.29 70.64 12.60 0.69 4.85 5.67 2.41 1.19 0.59 0.08 

J1544 1.01 68.47 11.88 0.96 5.61 7.29 2.37 1.63 0.73 0.05 
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Table 5 Zircon U–Pb isotope data, Ti-concentration in zircons and calculated temperatures using 

the Ti-in-zircon thermometer 
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Highlights 

 Metapelites at Hongshaba, North China Craton have experienced UHT 

metamorphism 

 Ca in garnet may aid in retrieving UHT conditions from Fe-rich metapelites 

 An overall clockwise P–T evolution is likely for Hongshaba UHT rocks 

 The timing of cooling of Hongshaba UHT rocks to solidus is ca. 1.91 Ga 
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