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ABSTRACT

The peak temperature and duration of ultrahigh-temperature (UHT) metamorphism are critical to

identify and understand its tectonic environment. The UHT metamorphism of the Jining complex

in the Khondalite Belt, North China Craton is controversial on the peak temperature, time and tec-

tonic setting. A representative sapphirine-bearing granulite sample is selected from the classic

Tianpishan outcrop for addressing the metamorphic evolution and timing. The rock is markedly

heterogeneous on centimetre scale and can be divided into melanocratic domains rich in silliman-
ite (MD-s) or rich in orthopyroxene (MD-o), and leucocratic domains (LD). On the basis of detailed

petrographic analyses and phase equilibria modelling using THERMOCALC, all three types of

domains record peak temperatures of 1120–1140 �C and a series of post-peak cooling stages at 0�8–

0�9 GPa to the fluid-absent solidus (�890 �C), followed by sub-solidus decompression. The peak

temperature for MD-s is constrained by the coexistence of sillimanite-I þ sapphirine þ spinel þ
quartz, where sillimanite-I contains densely exsolved aciculae of hematite, yielding reintegrated

Fe2O3 contents up to 2�1–2�3 wt %. The post-peak cooling evolution involves the sequential appear-
ance of K-feldspar, sillimanite-II þ garnet, orthopyroxene and biotite, where sillimanite-II is

exsolution-free and contains variable Fe2O3 contents of 1�3–1�8 wt %. The peak temperature for

MD-o is constrained by the sapphirine þ orthopyroxene assemblage, where orthopyroxene has a

maximum AlIV of 0�22 (Al2O3 ¼ 9�5 wt %) in the core. The cooling evolution involves the sequential

appearance of K-feldspar, garnet and biotite, and the decreasing AlIV (0�22!0�17) from core to rim

in orthopyroxene. The peak temperature for LD is constrained by the inferred K-feldspar-absent as-
semblage and the maximum anorthite content of 0�11 in K-feldspar. The cooling evolution involves

the crystallization of segregated melts, exsolution of supra-solvus ternary feldspars and growth of

biotite. The Al in orthopyroxene, Fe2O3 in sillimanite and anorthite in K-feldspar are good indicators

for constraining extreme UHT conditions although they depend differently on bulk-rock composi-

tions. In-situ SHRIMP U–Pb dating of metamorphic zircon indicates that the UHT metamorphism

may have occurred at >1�94 Ga and the cooling under UHT conditions lasted over 40 Ma. The ex-

treme UHT metamorphism in the Jining complex is interpreted to be triggered by the advective
heating of intraplate hyperthermal mafic magmas together with a plume-related hot mantle upwell-

ing, following an orogenic crustal thickening event.
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INTRODUCTION

Ultrahigh-temperature (UHT) metamorphic crustal

rocks are subjected to temperatures over 900 �C at only

moderate pressure on regional scale (Ellis et al., 1980;

Harley, 1998a, 2008), which is difficult to explain with a

normal tectonic scenario (e.g. Burg & Gerya, 2005;

Kelsey, 2008; Sizova et al., 2014). Continental back-arcs

were widely favoured to generate UHT metamorphism

with geothermal gradient of about 20–25 �C/km, due to

their high heat flow (Collins, 2002; Hyndman et al.,

2005; Currie & Hyndman, 2006; Brown, 2006;

Brownet al., 2007). Numerical modelling indicated that

a long-lived orogenic belt with extremely enriched in-

ternal heat-producing radioactive elements can autono-

mously attain UHT metamorphic conditions of 900–

1000 �C (Clark et al., 2011). Besides the above-

mentioned processes, intra-continental rifting (e.g.

Santosh & Omori, 2008; Tucker et al., 2015; Zheng &

Chen 2017), post-collision mantle upwelling (e.g. Platt

et al., 1998; Lee et al., 2016) and mantle plume bom-

barding (e.g. Santosh et al., 2008) were also proposed

to influence the formation of UHT rocks. However, these

tectonic regimes may not necessarily account for the

extreme UHT metamorphism over 1100 �C with geo-

thermal gradients exceeding 30 �C/km, such as those

reported in the Napier Complex, Antarctica (Harley &

Motoyoshi, 2000), the Central Highland complex, Sri

Lanka (Sajeev & Osanai, 2004) and the Brasilia fold belt,

Brazil (Moraes et al., 2002). The genesis and tectonic at-

tribution of such extreme UHT metamorphism are still

not investigated to a sufficient depth.

Effective temperature indicators for UHT meta-

morphism are also urgently required. The traditional

diagnostic mineral assemblages of UHT metamorphism

such as sapphirine þ quartz and orthopyroxene þ silli-

manite indicate wide temperatures ranging over 900–

1000 �C (e.g. Harley, 2008; Kelsey, 2008). As Fe–Mg

thermometry is mostly not applicable for quantifying

UHT conditions considering the high efficiency of cat-

ionic diffusion (e.g. Kelsey & Hand, 2015), the Al in

orthopyroxene thermometry has been employed as an

available candidate to retrieve the temperatures of UHT

metamorphism as the Al diffusion is much slower (e.g.

Harley, 1998b; Harley & Motoyoshi, 2000; Hollis &

Harley, 2003; Pattison et al., 2003; Harley, 2004; Kelsey

& Hand, 2015). For example, all the peak mineral

assemblages in the UHT rocks from the aforementioned

three localities have orthopyroxene, sapphirine and

quartz with or without garnet and sillimanite, where

orthopyroxene contains a maximum Al2O3 content over

12�5 wt % and records temperatures of 1120–1150 �C

(Harley & Motoyoshi, 2000; Moraes et al., 2002; Sajeev

& Osanai, 2004). Nevertheless, the estimation of peak

temperatures remains difficult in UHT rocks that do not

contain orthopyroxene in the peak assemblage.

Most granulites, especially those peaking at UHT

conditions, usually record prolonged slow cooling his-

tories (e.g. Macdonald et al., 2011; Wei et al., 2014;

Zhang et al., 2015; Clark et al., 2018; Laurent et al.,

2018), such as the UHT metamorphism in Rogaland,

Norway (Laurent et al., 2018) and the Napier complex,

Antarctica (Clark et al., 2018), which have cooling dura-

tions over 100 Ma under supra-solidus conditions.

The UHT metamorphism with post-peak slow cooling

(> 30 Ma) was interpreted to have formed at the hot

underbelly of orogens with external heat source (e.g.

Kelsey & Hand, 2015; Harley, 2016), which has been

tested numerically by the protracted post-convergent

ductile flow in orogenic cores (e.g. Jamieson &

Beaumont, 2011). By contrast, the UHT metamorphism

with post-peak fast cooling (mostly <10 Ma) is relatively

limited, and is interpreted to be the result of severe

lithospheric thinning and crustal extension accompa-

nied by voluminous magmatism (e.g. Harley, 2016) or

as lower pressure overprinting during rapid exhum-

ation of deeply subducted continental slabs (e.g. Dong

et al., 2019). Thus, the duration of UHT metamorphism

is also significant for understanding its geodynamic na-

ture (e.g. Harley, 2016; Laurent et al., 2018).

UHT metamorphism in the Jining complex,

Khondalite Belt, North China Craton (NCC) (Fig. 1a, b)

has attracted much attention and debates on both its

peak temperature and metamorphic age in the last dec-

ade. For instance, the peak temperature of UHT granu-

lites from the classic outcrops at Tuguishan and

Tianpishan (Fig. 1c) is disputed to be 960–970 �C

(Santosh et al., 2009; Li & Wei, 2018), 1020–1050 �C

(Jiao & Guo, 2011; Yang et al., 2014) and >1100 �C (Liu

et al., 2011; Santosh et al., 2012). As the peak tempera-

ture of UHT metamorphism is linked to its degree of

anatexis, heat budget and tectonic environment, a ro-

bust and uncontested constraint on the temperature is

required to understand the evolution of the terrane.

Although a consensus seemed to have reached about

the age of the UHT event at 1�91–1�92 Ga by zircon U–Pb

dating (Santosh et al., 2007a, 2013; Li & Wei, 2018;

Lobjoie et al., 2018; Li et al., 2019), all of these ages are

averaged from wide and continuous arrays usually

from �1�95 Ga to �1�88 Ga on the concordia curve. A re-

liable and exact duration of the UHT metamorphism in

the Jining complex is still unclear.

This study aims to determine the peak temperature

and the duration of the UHT metamorphism at

Tianpishan (Fig. 1c), using phase equilibria modelling

and in-situ zircon dating approaches. We focus on a

sapphirine-bearing pelitic granulite sample that is ex-

tremely heterogeneous and has different mineralogical

or compositional domains. In particular, we evaluate

the mineral compositions involving Al in orthopyrox-

ene, Ca in K-feldspar and Fe3þ in sillimanite for their po-

tential memories of UHT conditions.

GEOLOGIC SETTING

The Paleoproterozoic Khondalite Belt in the Western

Block of the NCC extends in E–W direction for �750 km.

It is bordered by the Yinshan Block to the north and the
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Ordos Block to the south (Fig. 1a, b), and is interpreted

to have formed by a collision of these two blocks at

�1�95 Ga (e.g. Zhao et al., 2005, 2012). The Khondalite

Belt is intersected by the Paleoproterozoic Trans-North

China Orogen along its eastern end.

The major rock types in the Khondalite Belt are high-

grade metasediments (so called khondalite series), per-

aluminous granites, meta-mafic rocks and charnockites

(e.g. Lu et al., 1992; Zhao et al., 1999; Guo et al., 1999),

which are exposed in the Helanshan–Qianlishan (west),

Daqingshan–Ulashan (centre) and Jining (east) areas

(Fig. 1b). The metasediments occur as high-pressure–

normal–UHT granulite facies (e.g. Guo et al., 2006; Zhou

et al., 2010; Cai et al., 2014) roughly from west to east.

The detrital zircon dates (2�3–2�0 Ga) from them give a

depositional age younger than �2�0 Ga, and the meta-

morphic zircon age suggests an intricate high-grade

metamorphic history during 1�96–1�83 Ga (Wan et al.,

2006; Wu et al., 2006; Santosh et al., 2007a; Dong et al.,

2007, 2013; Yin et al., 2009, 2011; Li et al., 2011; Dan

et al., 2012; Cai et al., 2015; Li & Wei, 2016, 2018). It has

been suggested that the protoliths of these metasedi-

ments were deposited in cratonic basins (Condie et al.,

1992; Zhai & Peng, 2007), along passive continental

margins (Lu et al., 1996; Zhao et al., 2005), or more

probably, in back-arc extensional basins with their prov-

enance being juvenile continental arc sediments of 2�2–

2�0 Ga (Wan et al., 2009; Dan et al., 2012; Li & Wei,

2018). The peraluminous granites occur as minor leu-

cogranitic veins with crystallization ages of 1�97–1�89 Ga

(mean age ¼ 1�94 Ga; Guo et al., 1999), as well as mas-

sive garnet-bearing granite batholiths or intrusions with

crystallization ages of 1�88–1�86 Ga in the Qianlishan–

Helanshan area (Yin et al., 2009, 2011) and 1�92–1�89 Ga

in the Jining area (Guo et al., 2002; Zhong et al., 2007).

They were possibly generated by the anatexis of the
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Fig. 1. (a) A tectonic sketch of the North China Craton (after Zhao et al., 2005). (b) A geological map showing the distribution of the
Khondalite Belt and adjacent tectonic units (after Zhao et al., 2005). (c) A geological map showing the lithologic distribution in the
Jining complex (modified after Guo et al., 2001), with the sample locality of this study and the outcrops of UHT granulites from
literature.
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metasediments (Shi et al., 2018; Wang et al., 2018). The

mafic rocks mainly occur as gabbronorite with episodic

crystallization ages of 2�45–2�10 Ga, 1�97–1�93 Ga and

1�85–1�84 Ga, and metamorphic ages of 1�95–1�83 Ga

(Guo et al., 1999; Peng et al., 2010; Wan et al., 2013; Liu

et al., 2014).

The Jining complex located at the eastern part of the

Khondalite Belt comprises predominantly pelitic granu-

lite/gneiss, peraluminous granite, and minor meta-

gabbronorite (Fig. 1b, c). It has been studied intensively

in the last decade owing to the increasing reports of

UHT granulites, characterized by spinel- and

sapphirine-bearing assemblages (e.g. Liu & Li, 2007;

Santosh et al., 2007b; Jiao & Guo, 2011; Zhang et al.,

2012; Liu et al., 2012; Shimizu et al., 2013; Yang et al.,

2014; Li & Wei, 2016, 2018; Lobjoie et al., 2018; Li et al.,

2019). These UHT rocks have metamorphic ages of

1�91–1�92 Ga (Santosh et al., 2007a; Li & Wei, 2018;

Lobjoie et al., 2018; Li et al., 2019) and �1�88 Ga (Yang

et al., 2014). Their P–T paths were initially inferred as

anticlockwise (Santosh et al., 2009; Liu et al., 2011;

Shimizu et al., 2013), but were recently revised to be

clockwise based on relatively robust evidence for the

pre-peak decompression and heating (Jiao et al., 2013a;

Yang et al., 2014; Li & Wei, 2016, 2018; Lobjoie et al.,

2018; Li et al., 2019).

The samples in this study were collected from the

Tianpishan outcrop (40�4604600N, 113�1600400E) in the

Jining complex (Fig. 1c). The rocks show prominent het-

erogeneity in decimetre to centimetre scale, with

schlieren and gneissic structures composed of felsic

leucocratic domains and ferromagnesian-rich melano-

cratic domains (Fig. 2a), indicating extensive partial

melting during high-grade metamorphism (also see

Santosh et al., 2007b; Jiao & Guo, 2011; Li & Wei, 2018).

ANALYTIC METHODS

Mineral analyses were performed on a JEOL-8230 elec-

tron microprobe analyser (EMPA) and HR-Evolution

laser Raman microscope at the Key Laboratory of

Orogenic Belts and Crustal Evolution, Peking

University, Beijing. Acceleration voltage and beam cur-

rent were 15 kV and 10 nA, respectively. The beam was

set to diameters of 1–2 lm, and counting times were 5 s

on background and 10–15 s on peak. The SPI 53 miner-

als standard from SPI Supplies (U.S.) was used for the

quantitative analysis, the PRZ correction was made at

the final calibration stage, and other details are

described in Li et al. (2018). The Raman spectroscopy

was carried out using 532 nm excitation wavelength on

the Ar-ion laser. The laser spot was focused to 1–2 lm,

the accumulation time for spectra was 10 s, and the esti-

mated spectral resolution was 0�7 cm-1. The mineral

phases were identified using the KIAVR database soft-

ware. Mineral formulas and site occupancies were

determined for fixed oxygen anion amounts, with triva-

lent iron calculated by stoichiometric charge balance.

The image analyses for proportion of minerals and

exsolved lamellae were performed using the ImageJVR

software, to generate effective local compositions and

reintegrate pre-exsolved homogeneous mineral com-

positions. To take perthite as an example, the mineral

grains in a photomicrograph were cropped to suitable

rectangles, and the exsolved lamellae were automatic-

ally distinguished, with their area proportions meas-

ured by particles summation. Other details are the

same as those described in Hokada (2001).

In-situ zircon U–Th–Pb isotope analysis and cathode-

luminescence (CL) imaging were carried out on sensi-

tive high-resolution ion microprobe (SHRIMP) and JEOL

JSM-6610A scanning electron microscope (SEM)

equipped with Robinson CL detector respectively, at

Research School of Earth Sciences, Australian National

University, Canberra. The primary O2 beam was

focused to 10 mm in diameter, six scans of data were

acquired in 20 min, and zircon Temora-2 was used as

standard. Other details about the analytic procedures

are similar to those described in Williams (1998) and

Ireland & Williams (2003). Data were reduced using the

Isoplot-4�15 Excel macro of Ludwig (2003).

PETROLOGIC ANALYSES

A representative sapphirine-bearing pelitic granulite sam-

ple 17TPS was selected for petrologic analyses (Fig. 2b).

It consists of quartz (q), perthite (per), plagioclase (pl),

garnet (g), sillimanite (sill), spinel (sp), sapphirine (sa),

orthopyroxene (opx), biotite (bi), cordierite (cd) and

Ti�Fe oxides. The rock is markedly heterogeneous on a

centimetre scale (Fig. 2b, c), and can be divided into mel-

anocratic domains rich in sillimanite (MD-s; Fig. 2c, d) or

rich in orthopyroxene (MD-o; Fig. 2c, e), and leucocratic

domains (LD; Fig. 2c, f). The mineral proportions for each

type of domain are presented in Table 1.

The effective bulk-rock compositions of MD-s, MD-o

and LD were generated by volume weighted integration

of the constituent mineral compositions in local size

(Fig. 2c) and presented in Table 2 together with the

bulk-rock composition measured by X-ray fluorescence

(XRF). MD-s contains high Al2O3, Fe2O3 and MgO, but

low Na2O and CaO with the highest A/CNK (see Table 2

for definition) of 5�6 and A/AFM of 0�50. In contrast, MD-

o contains much higher Fe2O3 and MgO, and lower

Al2O3 with A/CNK of 3�0 and A/AFM of 0�17. LD shows

an Al-rich granitic composition with high SiO2, Na2O

and K2O, but low Fe2O3 and MgO with A/CNK of 1�3 and

A/AFM of 0�40. MD-s, MD-o and LD have XMg of 0�47,

0�58 and 0�53, respectively. In the compiled A/AFM–XMg

diagram (Fig. 3), the measured bulk-rock composition

(labeled with XRF) is plotted between MD-s and LD,

consistent with a rock that is dominated by these two

domains and contains minor MD-o (Fig. 2c). All the ef-

fective compositions of the three types of domains fall

on the compositional field of sapphirine-bearing granu-

lites compiled from the Jining complex and other

regions worldwide (Fig. 3).
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Petrography and mineral chemistry of MD-s
MD-s mainly consists of sillimanite, garnet, perthite and

quartz, with a small amount of sapphirine, spinel,

plagioclase, orthopyroxene, biotite, cordierite and

ilmenite.

Sillimanite shows prismatic and overgrown textures,

and is sub-divided into two types. Type one (sill-I) is

restricted to the core of prismatic sillimanite and has

densely exsolved aciculae of hematite (Fig. 4a), which

are 1–2 lm wide and oriented parallel to the c

5 mm
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(b) (c)
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Fig. 2. (a) Field photograph of the Tianpishan outcrop. (b) Photograph of the hand specimen of the investigated sapphirine-bearing
granulite. (c) Dissections showing the distribution of the three types of mineralogical or compositional domain in thin-sections. (d–
f) Representative photographs of the three types of domain. MD-s, melanocratic domain rich in sillimanite; MD-o, melanocratic do-
main rich in orthopyroxene; LD, leucocratic domains.
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crystallographic axis of sillimanite (Fleet & Arima,

1985). The host sillimanite contains Fe2O3 of 1�31–

1�54 wt % (Table 3) and the exsolved hematite occupies

1�5–2�0 vol. % of the grain. Thus, pre-exsolution compo-

sitions of sill-I can be reintegrated to contain Fe2O3 up

to 2�1–2�.3 wt % (Fig. 5a). Type two sillimanite (sill-II)

overgrows sill-I (Fig. 4a) and contains sapphirine, spi-

nel, ilmenite and quartz as inclusions (Fig. 4a–c). It is

exsolution-free and contains 1�29–1�79 wt % Fe2O3

(Table 3; Fig. 5a). Garnet occurs as anhedral grains that

are 0�2–0�5 mm across, coexisting with sill-II (Fig. 4d) or

as individual grains surrounded by fine-grained ortho-

pyroxene (Fig. 4e), or cordierite coronae (Fig. 4f). It is

characterized by Xalm [¼ Fe2þ/ (Mg þ Fe2þ þ Ca þ Mn),

defined accordingly for other components] of 0�54–0�57,

Xprp of 0�37–0�40, Xgr of 0�03–0�04 and Xsps of �0�02

(Table 3), where Xgr increases clearly but other compo-

nents fluctuate slightly from core to rim (Fig. 5b). Spinel

is 0�05–0�25 mm across and occurs as inclusions in sill-II

(or with a thin rind of sill-II; Fig. 4b, c) and perthite

(Fig. 4g) or coexists with cordierite coronae around gar-

net (Fig. 4f). A few dark grains with a thin rind of sill-II

have trellised exsolution lamellae of titanomagnetite

(nearly pure ulvöspinel) in widths of 2–4 lm (Fig. 4i),

which occupy �3 vol. % of the total grain. The different

types of spinel show similar XAl [¼ Al/(Al þ Fe3þ)] of

0�94–0�99, variable XMg [¼ Mg/(Mg þ Fe2þ)] of 0�32–

0�46, and low ZnO of 0�15–1�3 wt% with XZn [¼ Zn/(Mg þ
Fe2þ þ Zn)] below 0�03 (Table 3). The dark grains with

exsolution lamellae were reintegrated to contain �1 wt

% TiO2. Sapphirine is 0�05–0�15 mm across and occurs

as inclusions in sill-II (Fig. 4a, c). It shows XMg of 0�68–

0�71 and AlIV (tetrahedral Al in p.f.u.) of 0�12–0�18

(Table 3). Orthopyroxene occurs as fine grains that are

0�05–0�15 mm across, surrounding garnet or sill-II

(Fig. 4d, e, h). It contains 5�25–6�03 wt % Al2O3 (AlIV ¼
0�13–0�14; Fig. 5c) and shows an XMg of 0�65–0�67

(Table 3). Perthite occurs as anhedral crystals that are

1–2 mm across. It has 13�2–16�6 vol. % of exsolved

lamellae that are 2–4 lm in width, and occasionally has

inclusions of spinel and ilmenite (Fig. 4g). The host sani-

dine has Xor [¼ K/(Ca þ Na þ K)] of 0�84–0�86 and Xan [¼
Ca/(Ca þ Na þ K)] below 0�01 and the exsolved lamellae

have Xan of 0�28–0�30 and Xor below 0�01 (Table 3),

which allows the reintegration of an original supra-

solvus K-feldspar (ksp) with Xor of 0�68–0�72 and Xan of

0�05–0�06 (Fig. 5d). Plagioclase occurs as intersertal

grains that are 0�1–0�5 mm across. It has Xan of 0�30–

0�32 (Table 3). Biotite occurs as rounded inclusions

mostly along the fractures in garnet, or as aggregated

flakes with irregular and cuspate boundaries in the ma-

trix commonly surrounding sill-II, garnet or orthopyrox-

ene (Fig. 4b�f). The flakes in the matrix contain

considerable TiO2 content of 4�50–5�21 wt % and XMg of

0�75–0�76, while the inclusions in garnet show a higher

XMg of 0�80–0�81 and slightly lower TiO2 of 3�78–4�79 wt

% than the former (Table 3). Cordierite commonly

Table 1: Mineral proportions of different domains (vol. %)

Domains sill g opx Sa sp per pl q bi cd ilm

MD-s 17�4 15�4 1�8 0�4 3�7 19�2 0�5 24�3 6�7 9�6 1
MD-o – 19�2 29�1 1�2 – 14�3 0�5 22�7 6�8 4�9 1�3
LD 2�8 6�1 – – – 46�3 12�5 26�9 3�8 1�2 0�4

Table 2: Bulk-rock analysis for sample 17TPS and effective compositions of different domains (wt %)

Sample SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 LOI A/CNK A/AFM XMg

17TPS 54�54 0�906 25�39 9�21 0�054 4�55 0�50 0�62 3�27 0�175 0�74 4�6 0�46 0�49
MD-s 55�19 0�747 26�89 9�26 – 4�22 0�58 0�63 2�47 – – 5�6 0�50 0�47
MD-o 58�89 0�910 12�95 14�16 – 9�81 0�61 0�53 2�15 – – 3�0 0�17 0�58
LD 69�32 0�324 17�46 2�33 – 1�34 1�97 3�12 4�15 – – 1�3 0�40 0�53

Sample 17TPS was analysed by X-ray fluorescence (XRF) and the effective compositions were generated by volume-weighted inte-
gration of mineral compositions. A/CNK ¼ Al2O3/(CaO þ Na2O þ K2O), A/AFM ¼ (Al2O3 – CaO – Na2O – K2O)/(Al2O3 þ FeOtotal þ
MgO – CaO – Na2O – K2O), XMg ¼MgO/(MgO þ FeOtotal) in mole.

0 0 2 0 4 0 6 0 8 1
0

0 2

0 4

0 6

0 8

MD-o

MD-s

LD

XRF

Jining complex other regions

A
/A

F
M

sill sill

sa

cd

sp

g

opx

XMg

Fig. 3. A/AFM–XMg diagram showing the bulk-rock composi-
tions of sapphirine-bearing UHT metapelites. Data are col-
lected from the Jining complex (Shimizu et al., 2013; Li & Wei,
2018; Lobjoie et al., 2018) and other regions worldwide (Raith
et al., 1997; Osanai et al., 1998; Brandt et al., 2011; Rao et al.,
2012; Korhonen et al., 2012). Also shown are the sketchy min-
eral plots. A/AFM ¼ (Al2O3–CaO–Na2O– K2O)/(Al2O3 þ FeOtotal

þ MgO–CaO–Na2O–K2O), XMg ¼ MgO/(MgO þ FeOtotal) in
mole.
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occurs as corona around garnet (Fig. 4f), and shows a

uniform XMg of 0�82–0�84 (Table 3). Ilmenite (ilm) varies

in size of 0�05–0�35 mm and commonly coexists with

spinel or sapphirine within sill-II (Fig. 4a, b), and in the
matrix (Fig. 4f). Some grains show exsolved titanomag-

netite (tim) lamellae that are oriented and 5–10 lm wide

(Fig. 4j). The host ilmenite contains 36�24–47�18 wt %

TiO2 with Xilm (FeTiO3 mole fraction) of 0�71–0�90, and

the exsolved titanomagnetite contains 13�44–22�36 wt %

TiO2 with Xusp (Fe2TiO4 mole fraction) of 0�40–0�65
(Table 3).

According to the textural relations and mineral com-

positions mentioned above, the mineral parageneses in

MD-s can be summarized as follows (Fig. 6). The peak

assemblage is inferred to be characteristic of the coex-

istence of sapphirine, spinel and sill-I (Fig. 4a–c).

Perthite should have been absent at the peak stage
based on the fact that it contains the inclusions of spinel

and ilmenite (Fig. 4g), but there is no perthite as an in-

clusion in sill-II like the minerals appearing in the peak

assemblage (Fig. 4a–c). Sill-II together with garnet

appears later (Fig. 4a–d), followed by orthopyroxene

(Fig. 4e, h), and then biotite (Fig. 4d). Cordierite is
inferred to appear latest from its coronal occurrence. In

brief, the inferred sequence of mineral evolution in MD-

s is sa�sp�sill-I ! per ! sill-II/g ! opx ! bi ! cd

(Fig. 6).

Petrography and mineral chemistry of MD-o
MD-o mainly consists of orthopyroxene, garnet, per-

thite and quartz, with a small amount of sapphirine,

plagioclase, biotite, cordierite and ilmenite.

Garnet occurs as anhedral grains that are 0�2–

0�5 mm across (Fig. 7a). It shows Xalm of 0�58–0�62, Xprp

of 0�32–0�36, Xgr of �0�03 and Xsps of �0�03 (Table 4),

without evident compositional zoning. Sapphirine

occurs as residual grains that are 0�1–0�3 mm across in

felsic matrix (Fig. 7a, b). It is evidently nonuniform in

composition, with sharply elevating AlIV from core

(0�02–0�11) to rim (0�16–0�24). It gives an XMg of 0�64–

0�70, slightly increasing from core to rim (Table 4).

Orthopyroxene occurs as medium-sized grains that are

1–2 mm across and is a dark red color (Fig. 7b, c). It

gives an XMg of 0�63–0�65 and contains 6�75–9�46 wt %

Al2O3, decreasing clearly from core to rim as shown by

the AlIV variance from 0�22 in the core to 0�17 in the rim

(Table 4; Fig. 5c). Perthite occurs as anhedral crystals

that are 1–2 mm across. It has 14�5–17�1 vol. % exsolved

lamellae of widths of 2–5 lm The host sanidine has Xor
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Fig. 4. Photomicrographs (a–h) and BSE images (i, j) showing the mineral textures in MD-s. (a) Sill-I with exsolved hematite aciculae
is overgrown by exsolution-free sill-II that has inclusions of sapphirine and ilmenite. (b, c) Sill-II contains the inclusions of spinel,
sapphirine, quartz and ilmenite; biotite occurs as flakes with irregular and cuspate boundaries. (d) Sill-II overgrows sill-I and coex-
ists with garnet, followed by the sequential growth of orthopyroxene and biotite. (e) Fine-grained orthopyroxene occurs among
garnet grains. (f) Cordierite together with spinel and ilmenite occurs as coronae around garnet and sill-II. (g) Perthite contains inclu-
sions of spinel and ilmenite. (h) Orthopyroxene occurs as coronae around sill-II. (i) Dark spinel grains with a thin sill-II rind show
trellised exsolution lamellae of titanomagnetite. (j) Ilmenite has exsolved titanomagnetite lamellae.
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of 0�86–0�88 and Xan below 0�01 and the exsolved lamel-

lae have Xan of 0�28–0�29 and Xor of �0�01 (Table 4),

which allows to reintegrate an original supra-solvus K-

feldspar (ksp) with Xor of 0�71–0�74 and Xan of 0�05–0�06

(Fig. 5d). Plagioclase occurs as intersertal grains that
are 0�1–0�5 mm across. It has an Xan of 0�32–0�33

(Table 4). Biotite occurs as aggregated flakes commonly

surrounding garnet or orthopyroxene (Fig. 7a, c). It

gives an XMg of 0�63–0�66 and TiO2 of 3�9–4�08 wt %

(Table 4). Cordierite occurs as coronae around garnet

(Fig. 7a), with an XMg of 0�84–0�86 (Table 4).
The above mentioned textural relations and mineral

compositions for MD-o suggest that the peak

assemblage is marked by the presence of orthopyrox-

ene and sapphirine, which are separated by perthite

and quartz (Fig. 7b). This textural relation also implies

that perthite may have formed later than the peak min-

erals. Garnet is inferred to be excluded from peak as-

semblage with a reference of its paragenesis in MD-s.

Biotite is clearly a later growth (Fig. 7c) and cordierite

should be the latest. In brief, the inferred sequence of

mineral evolution in MD-o is sa�opx! per! g! bi!
cd (Fig. 6).

Petrography and mineral chemistry of LD
LD mainly consists of perthite, plagioclase and quartz,

with a small amount of sillimanite, garnet, biotite, cor-

dierite and ilmenite.

Sillimanite without any exsolution occurs as intersti-

tial grains or inclusions in perthite (Fig. 7d). It shows

uniform compositions and contains 1�29–1�39 wt %

Fe2O3 (Table 4). Garnet occurs as fine grains in the felsic

matrix. It shows Xalm of 0�57–0�60, Xprp of 0�35–0�38, Xgr

of �0�03 and Xsps of �0�02 (Table 4), and the cores

show slightly lower Xgr. Perthite occurs as anhedral

grains that are 1–2 mm across. It has 21�7–33�2 vol. % of

exsolved lamellae with widths of 5–10 lm, and some

grains have inclusions of sillimanite, plagioclase or il-

menite (Fig. 7d, e). The host sanidine has Xor of 0�74–
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garnet in MD-s. (c) Coupled compositional plots of (AlVI þ Fe3þ) versus AlIV for orthopyroxene, subjoined with AlIV zoning profile for
orthopyroxene in MD-o. (d) Compositional plots of measured perthite and reintegrated K-feldspar. Isotherms at 0�85 GPa are based
on the models of Fuhrman & Lindsley (1988) and Elkins & Grove (1990).
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Fig. 6. A summary of the paragenesis of minerals based on
petrography and mineral chemistry. The solid lines show the
presence of minerals, and the dashed lines indicate the pos-
sible presence of a mineral.
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0�79 and Xan below 0�02, the exsolved lamellae have

Xan of 0�28–0�30 and Xor below 0�01 (Table 4), and the

reintegrated composition for supra-solvus K-feldspar

shows Xor of 0�50–0�57 and Xan of 0�08–0�11 (Fig. 5d).

Plagioclase occurs mainly as anhedral crystals of 0�5–

1 mm across and occasionally as inclusions within per-

thite (Fig. 7e, f). It shows uniform compositions and has

Xan of 0�31–0�33 (Table 4), which slightly decreases

from core to rim in some grains. Biotite occurs as

aggregated flakes in the interstices among feldspars

(Fig. 7d�f). It gives an XMg of �0�64 and TiO2 of 3�87–

4�10 wt % (Table 4). Cordierite occurs as very thin coro-

nae around garnet and shows XMg of 0�84–0�86

(Table 4).

In LD, perthite is inferred to be formed later than silli-

manite and plagioclase according to the textures in

Fig. 7d, e, and thus, may be absent at the peak stage

(Fig. 6). Biotite is formed much later based on its inter-

sertal occurrences as fine flakes (Fig. 7d�f).

PHASE EQUILIBRIA MODELLING

For the mineral compositions mentioned above, a

model system NCKFMASHTO (Na2O–CaO–K2O–FeO–

MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3) was chosen for

phase equilibria modelling. The calculations were per-

formed using THERMOCALC 3�40 (Powell & Holland,

1988) with dataset ds62 (Holland & Powell, 2011).

Mineral activity–composition relationships are the

same as those in White et al., (2014a). The effective rock

compositions for the three compositional domains

(Table 5) are normalized according to the model system

and used for the modelling. The H2O content was

adjusted to ensure that the final-phase assemblage

occurs just above the solidus (e.g. Korhonen et al.,

2011, 2012), and the Fe3þ/Fe value was properly

adjusted using T � XFe
3þ diagrams. As the sillimanite

commonly contains non-negligible Fe2O3, we propose a

new ferric-sillimanite a�X model (see the Appendix) to

investigate the UHT phase equilibria.

Pseudosections for MD-s
The P–T pseudosection for MD-s was calculated over

the P–T window of 0�5–1�1 GPa and 800–1200 �C with

quartz, ilmenite and sillimanite in excess. It is contoured

with the isopleths of Xan(ksp), Xgr(g), AlIV(opx) and

Fe2O3(sill) for the relevant mineral assemblages

(Fig. 8a). The inferred peak assemblage characteristic of

sa þ sp þ sill-I is predicted to stabilize at temperatures

above 1120 �C at pressures of 0�8–0�9 GPa. The reinte-

grated Fe2O3 of 2�1–2�3 wt % in sill-I yields consistent

temperature conditions of 1110–1140 �C. Upon cooling,

the observed sequential appearance of per (ksp) ! sill-

II/g! opx! bi can be well documented. Firstly, the for-

mation of K-feldspar together with plagioclase and

quartz is predicted to occur at temperatures from

�1120 �C to �1045 �C and it is attributed to the crystal-

lization of melt, which has a trivial influence on the

modes of sapphirine, spinel and sillimanite shown as C

in Fig. 8b. The reintegrated perthite composition with

Xan ¼ 0�05–0�06 is also consistent with this temperature

range. Note that the initial crystallization temperature of

the melt that contains minor amounts of water is only

10�C lower than the dry solidus calculated for the rock.

Secondly, the notable growth of sill-II accompanied

with the appearance of garnet at the expense of sap-

phirine, spinel and quartz [sa (þ sp) þ q¼g þ sill-II] pro-

ceeds from �1045 �C to �1010 �C (R1 in Fig. 8b). The

per q+per q+per q+

opxopxopx

sasasa

gg

qq
plplpl

bibibi

perperper

sillsillsill

qq

bibibi

opxopxopx

bibibi

per q+per q+per q+
R1R1R1

R2R2R2
corecorecore

bibibi

gg

sasasa

bibibi

cdcdcd

perperper
plplpl qq

ilmilmilm

bibibi

(a) (b)

(d) (e) (f)

(c)

Fig. 7. Photomicrographs showing the mineral textures in MD-o (a–c) and LD (d–f). (a) Garnet embayed by cordierite and biotite. (b)
Sapphirine, orthopyroxene and garnet occur as isolated grains in the matrix of perthite and quartz, with biotite formed later. (c) A
dark red-colored orthopyroxene grain is in the matrix of perthite and quartz, with biotite formed later. (d) Sillimanite without any ex-
solution occurs as inclusions in perthite and grains in matrix. (e) Perthite contains the inclusions of plagioclase, ilmenite and quartz.
(f) Biotite occurs as aggregated flakes among plagioclase.
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Table 5: Normalized molar proportions used for phase equilibria modelling (mol %)

Domains Figures H2O* SiO2 Al2O3 CaO MgO FeOtotal K2O Na2O TiO2 O*

MD-s Fig. 8 0�25 61�22 17�58 0�69 6�98 7�72 1�75 0�68 0�62 2�51
Fig. 9 (X3þ

Fe ¼ 0�2) 0�25 62�31 17�9 0�70 7�10 7�86 1�78 0�69 0�63 0�79
(X3þ

Fe ¼ 0�9) 0�24 60�65 17�42 0�68 6�91 7�65 1�73 0�67 0�61 3�44
MD-o Fig. 10 0�25 59�98 7�77 0�66 14�89 10�85 1�39 0�52 0�70 2�99

Fig. 11a (A/AFM ¼ 0�1) 0�25 61�76 5�03 0�68 15�34 11�17 1�43 0�54 0�72 3�08
(A/AFM ¼ 0�6) 0�20 48�19 25�90 0�53 11�97 8�72 1�12 0�42 0�56 2�40

Fig. 11b (XMg ¼ 0�46) 0�25 59�98 7�77 0�66 9�10 16�65 1�39 0�52 0�70 2�99
(XMg ¼ 0�90) 0�25 59�98 7�77 0�66 17�80 7�95 1�39 0�52 0�70 2�99

LD Fig. 12 0�05 75�50 11�21 2�29 2�17 1�91 2�88 3�29 0�26 0�44
Fig. 13 0�05 78�06 11�59 2�37 2�24 1�97 2�98 0�00 0�27 0�46

0�05 74�16 11�01 2�25 2�13 1�88 2�83 5�00 0�26 0�43

*, adjusted proportions; XFe
3þ ¼ Fe3þ/Fe ¼ 2O/FeOtotal; A/AFM and XMg see Fig. 11.
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measured maximum Fe2O3 of 1�8 wt % in sill-II happens

to plot within the temperature range for reaction R1.

Thirdly, the appearance of orthopyroxene coupled with

the further growth of sill-II at the expense of sapphirine

and garnet (sa þ g ¼ opx þ sill-II) may occur at a tem-

perature of �1010 �C (R2 in Fig. 8b), which is followed

by a reaction opx þ sill-II ¼ g to �900 �C (R3 in Fig. 8b),

responsible for the further growth of garnet. The meas-

ured AlIV (0�13–0�14) in orthopyroxene and Fe2O3 (1�3–

1�5 wt %) in sill-II yield temperatures of 900–950 �C, con-

sistent with the later evolution during this sub-stage.

And fourthly, the formation of biotite (together with gar-

net) at the expense of melt and orthopyroxene (liq þ
opx þ sill-II ¼ bi þ g) occurs at �900 �C (R4, in Fig. 8b),

which terminates at the fluid-absent solidus. The above

post-peak cooling evolution may have been followed by

a decompression under sub-solidus conditions as indi-

cated by the formation of cordierite coronae around

garnet (Fig. 4f).

The core-rim zoning in garnet with increasing Xgr

(Fig. 5b) also provides evidence for the cooling process

mentioned above, according to the changing trend of

Xgr(g) isopleths in Fig. 8a, but the measured values of

Xgr cannot be well plotted in the pseudosection. This is

probably because (1) the garnet core may indicate

higher temperatures if its stability field is expanded

with the incorporation of MnO (Mahar et al., 1997; Wei

et al., 2004; White et al., 2014b), and (2) the plots of Xgr

may have been affected by small variation in bulk-rock

composition, such as CaO content (e.g. Dong et al.,

2018).

In Fig. 8a, the isopleths of the Fe2O3(sill) show steep

slopes in most assemblages. As the Fe2O3(sill) may be

influenced by the oxygen fugacity, we calculated a T �
XFe

3þ pseudosection at 0�86 GPa (Fig. 9) to investigate

the effects of bulk-rock XFe
3þ on the phase relations.

Figure 9 shows that the Fe2O3(sill) markedly increases

with increasing XFe
3þ in the fields with XFe

3þ below

�0�4, while in the fields with high XFe
3þ values, the

Fe2O3(sill) is mainly governed by temperature.

Although the Fe2O3(sill) isopleths may indicate lower

temperatures with increasing XFe
3þ, the reintegrated

Fe2O3 of 2�1–2�3 wt % in sill-I can yield temperatures

about 1100 �C for the possible maximum XFe
3þ value

(�0�76) that can stabilize the inferred spinel-bearing

peak assemblage.

Pseudosections for MD-o
The P–T pseudosection for MD-o was calculated over

the P–T window of 0�5–1�1 GPa and 800–1200 �C, with

quartz and ilmenite in excess, which was contoured

with the Xan(ksp) and AlIV(opx) values for the relevant

assemblages (Fig. 10a). The inferred peak assemblage

marked by sa þ opx is predicted to be stable at temper-

atures above 1120 �C at 0�8–0�9 GPa. The post-peak evo-

lution along an isobaric cooling path is predicted to be

marked by (1) the formation of K-feldspar together with

plagioclase and quartz from �1120 �C to �1040 �C (C in

Fig. 10b), representing the crystallization of melt with a

slight variation in the mode of sapphirine and orthopyr-

oxene; (2) the growth of garnet at the expense of sap-

phirine and orthopyroxene (sa þ opx ¼ g, R1 in
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Fig. 10b) from �1040 �C to �900 �C; and (3) the growth

of biotite (together with garnet) with the expense of

melt, orthopyroxene and sapphirine (liq þ opx þ sa ¼ bi

þ g, R2 in Fig. 10b) from �900 �C to the fluid-absent sol-

idus. A further evolution dominated by decompression

in sub-solidus conditions can be inferred from the for-

mation of cordierite coronae around garnet (Fig. 7a).

The measured core-rim zoning with decreasing AlIV

(0�22 ! 0�17) in orthopyroxene is calculated to record a

temperature decrease from �1120 �C to �990 �C

(Fig. 10a), consistent with the conditions of the peak

stage and post-peak cooling to the apparent growth of

garnet. The reintegrated perthite composition with Xan

¼ 0�05–0�06 yields temperatures of 1080–1110 �C, in

good accordance with the crystallization of K-feldspar.

As shown in Fig. 10a, the amount of AlIV in orthopyr-

oxene is a good thermometer, but the slope of the iso-

pleth may vary somewhat with respect to changing

mineral assemblages. To investigate the behavior of

AlIV(opx) isopleths, we calculated T – A/AFM and T –XMg

pseudosections at 0�86 GPa (Fig. 11). Phase relations in

Fig. 11a suggest that orthopyroxene is stable in the

fields with A/AFM below 0�34–0�55, sapphirine is pre-

sent in the fields with A/AFM above 0�15 and sillimanite

stabilizes when the A/AFM is greater than 0�27–0�55 (de-

pending on temperature). The AlIV(opx) increases lin-

early as temperature increases, slightly influenced by

the bulk-rock A/AFM in the sapphirine-present fields. In

contrast, it increases only as the bulk-rock A/AFM

increases in the sapphirine-absent fields. The value of

AlIV(opx) ¼ 0�14 (Al2O3 ¼ 6 wt %) can yield temperatures

greater than 900 �C (Fig. 11a). The T – XMg pseudosec-

tion (Fig. 11b) shows that orthopyroxene and sapphirine

are stable in the fields of high XMg while garnet stabil-

izes in the fields of low XMg. Although the AlIV(opx)

increases as temperature elevates in all the

orthopyroxene-bearing assemblages, it clearly

decreases with increasing XMg in the sapphirine-

present fields but shows an inverse trend in the

sapphirine-absent fields. The measured maximum

AlIV(opx) (0.22) can yield 1120 �C for the composition of

MD-o (XMg ¼ 0�75), while defining a lower temperature
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of �1075 �C as XMg reduces to �0�6. Note that an

AlIV(opx) of 0�14 (Al2O3 ¼ 6 wt %) can yield tempera-

tures greater than 900 �C when XMg is between 0�6–0�9
(Fig. 11b).

Pseudosections for LD
The P–T pseudosection for LD was calculated over the

P–T window of 0�5–1�1 GPa and 800–1200 �C, with quartz

and ilmenite in excess, which was contoured with the

Xan(ksp), Xan(pl) and Fe2O3(sill) for the relevant fields

(Fig. 12a). According to Kriegsman (2001), LD is domi-

nated by segregated melts, which can yield tempera-

tures up to 1140 �C at fixed pressures of 0�8–0�9 GPa

(Fig. 12b), slightly above the dry solidus calculated for

the rock, and consistent with the inferred K-feldspar-ab-

sent peak assemblage. The crystallization of melt dur-

ing cooling is characterized by the formation of K-

feldspar þ quartz 6 plagioclase at temperatures rang-

ing from �1140 �C to �1120 �C (C in Fig. 12b), in accord-

ance with the textural relations where sillimanite and

plagioclase occur as inclusions in perthite (Fig. 7d, e). In

this crystallization process, the amount of melt is sharp-

ly reduced from �55 mol % to �6 mol % (Fig. 12b). The

further cooling evolution is dominated by the increase

of plagioclase and the decrease of K-feldspar (ksp ¼ pl,

R1 in Fig. 12b) between 1120 �C and 910 �C, where gar-

net and sillimanite are not involved, and the melt mode

is slowly reduced. Biotite growth occurs at �910 �C and

terminates at the fluid-absent solidus (R2 in Fig. 12b).

The reintegrated perthite composition with Xan ¼ 0�08–

0�11 is well consistent with the temperatures above

1100 �C. The measured Xan ¼ 0�31–0�33 in plagioclase is

roughly in agreement with the inferred cooling condi-

tions (Fig. 12a), although the Xan(pl) isopleths irregular-

ly fluctuate in the P–T field. The measured Fe2O3 ¼ 1�3–

1�4 wt % in sillimanite recorded temperatures of 990–

1030 �C (Fig. 12a). A decompression under the sub-

solidus conditions can be inferred by the occurrence of

cordierite coronae around garnet.

In Fig. 12a, the Xan(ksp) isopleths show steep slopes

and are a good temperature indicator. To investigate

the influence of bulk-rock compositions on the Xan(ksp),

we calculated a T �M(Na2O) pseudosection at 0�86 GPa

in Fig. 13. It shows that the Xan(ksp) is dependent not

only on temperatures, but also considerably on the

bulk-rock Na2O contents. For a given Xan(ksp) value, it

can yield much higher temperature estimates in Na2O-

lower rocks than in Na2O-higher rocks.

ZIRCON GEOCHRONOLOGY

Thirty zircon grains in sample 17TPS (MD-s) were

selected from thin-section and checked by energy dis-

persive spectrometer (EDS) for dating. Zircon common-

ly occurs as inclusions in perthite, sillimanite and biotite

(Fig. 14a). Most grains are oval and 20–35 lm in size.

They show intermediate and structureless lumines-

cence, suggesting a high-grade metamorphic genesis

(e.g. Corfu et al., 2003). Their Th/U ratios range from

0�01–1�07 except one grain in sillimanite that has high

Th/U¼ 3�12 (Table 6). Eleven grains were rejected due

to high common lead in them, or forming outliers, and

the other 19 grains were subdivided into three groups

based on their textural relations. Seven zircon grains

included in perthite yield 207Pb/206Pb ages from

950

1000

1050

1100

1150

0 19 0 34 0 44 0 53 0.60

ts 22

ts 20

ts 18

ts 16

opx sa

opx sa pl

opx sa pl ksp

opx sa pl ksp g

opx pl ksp

sa pl ksp g

sa pl ksp g sill

sa
pl
ksp
sill

sa sill pl

sa

sa pl

sa pl ksp

o
p

x
p

l
k

sp
g

NCKFMASHTO  (+ q + ilm + liq)                                                                             @ 0.86 GPa

ts 24

ts
22

ts
20

ts
18

ts
16

opx opx sa

opx sa plg opx

o
p

x
sa

p
l

k
sp

g

op
x

sa
pl

ks
p

o
p

x
sa

k
sp

g

g opx ksp

g ksp

0 5 0 6 0 7 0 8 0 9

X Mg

g

opx

sa

g

sill

opx

sa

T
(

C
)

°

A/AFM
0 10 0 27 0 39 0 49 0 57

ts
14

900

ts 14

opx sa pl ksp g sill

(a) (b)opx

MD-o

MD-o

Al (opx) = 0.20IVts 20

Fig. 11. (a) A T � A/AFM pseudosection (note the nonlinear abscissa) and (b) a T � XMg pseudosection, calculated at 0.86 GPa based
on the composition of MD-o. The pseudosections are contoured with AlIV(opx), and shaded with increasing color depth for the
fields with increasing degrees of freedom. A/AFM ¼ (Al2O3–CaO–Na2O–K2O)/(Al2O3 þ FeO þ MgO–CaO–Na2O–K2O), XMg ¼ MgO/
(MgO þ FeO) in mole.

Journal of Petrology, 2020, Vol. 61, No. 6 15

D
ow

nloaded from
 https://academ

ic.oup.com
/petrology/article/61/6/egaa070/5867921 by guest on 13 O

ctober 2022



1923 6 24 to 1983 6 28 Ma (Table 6), with a concordia

age of 1945 6 20 Ma (MSWD ¼ 4�5) and a weighted

mean age of 1943�9 6 8�5 Ma (MSWD ¼ 0�92; Fig. 14b,

c). Six zircon grains included in sillimanite yield
207Pb/206Pb ages from 1918 6 27–1978 6 26 Ma

(Table 6), with a concordia age of 1937 6 22 Ma (MSWD

¼ 0�95) and a weighted mean age of 1941 6 15 Ma

(MSWD ¼ 0�97; Fig. 14b, c). However, six zircon grains

included in biotite give 207Pb/206Pb ages from

1881 6 10–1909 6 8 Ma (Table 6), with an intercept age

of 1904 6 22 Ma (MSWD ¼ 0�14) and a weighted mean

age of 1900�4 6 8�8 Ma (MSWD ¼ 0�99; Fig. 14b, c). The
207Pb/206Pb ages of zircon grains included in perthite

and sillimanite cannot be well differentiated from each

other, and thus, the zircon ages are defined as two pop-

ulations, �1�94 Ga and �1�90 Ga (Fig. 14c).

DISCUSSION

Metamorphic evolution
Petrologic analyses and phase equilibria modelling sug-

gest that the three types of domains in the sapphirine-

bearing granulite sample 17TPS underwent a uniform

metamorphic evolution that involves three stages: peak
temperature, post-peak cooling to the fluid-absent sol-

idus and sub-solidus decompression.
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Peak temperature stage
The peak temperatures of UHT granulites from the clas-

sic outcrops at Tuguishan and Tianpishan are disputed

to be 960–970 �C (Santosh et al., 2009; Li & Wei, 2018),

1020–1050 �C (Jiao & Guo, 2011; Yang et al., 2014) and

>1100 �C (Liu et al., 2011; Santosh et al., 2012). This dis-

agreement results mainly from the different approaches

employed. The phase equilibria modelling results of the

three compositional domains in the pelitic granulite

sample at the Tianpishan outcrop suggest that the peak

temperatures of the UHT metamorphism are over

1100 �C (or up to 1120–1140 �C) at pressures of 0�8–

0�9 GPa, which are close to the dry solidi of �1130 �C

calculated for the three domains (Fig. 15). These condi-

tions are well consistent with the stability fields of the

inferred K-feldspar-absent peak assemblages of sill-I þ

Fig. 14. (a) Photomicrographs showing zircon occurrence as inclusions in the labelled host minerals, and cathode-luminescence
(CL) images showing zircon characters, 207Pb/206Pb ages and analytical sites. (b) A Tera–Wasserburg concordia diagram showing
the age plots for the three groups of zircon that occur as inclusions in perthite, sillimanite and biotite. (c) The weighted mean
207Pb/206Pb ages for the three groups of zircon.

Table 6: Zircon U–Pb isotopic data and corrected ages

Host U Th Th/U Isotopic ratios Corrected ages [Ma]

[ppm] [ppm] 207Pb/206Pb sd.% 238U/206Pb sd.% 207Pb/206Pb 1r sd. 206Pb/238U 1r sd.

per 135 53 0�41 0�1259 1�63 2�827 2�4 1956 34 1941 40
341 154 0�47 0�1204 0�94 2�733 2�1 1948 17 2008 36
511 271 0�55 0�1242 1�51 2�887 3�2 1983 28 1913 53
552 6 0�01 0�1195 0�27 2�985 1�8 1947 5 1862 28
718 70 0�10 0�1179 1�31 2�753 1�7 1923 24 1997 28
178 17 0�10 0�1180 0�72 2�841 1�8 1927 14 1944 31
147 68 0�48 0�1171 0�53 2�752 1�2 1932 14 2001 21

sill 550 38 0�07 0�1192 1�12 3�000 3�1 1941 20 1854 50
72 218 3�12 0�1196 0�81 2�867 1�7 1918 27 1925 29

124 106 0�88 0�1205 0�60 2�875 1�5 1958 17 1923 25
1127 106 0�10 0�1181 0�87 2�869 3�7 1925 16 1927 62

143 92 0�66 0�1192 0�60 2�990 1�7 1935 16 1859 28
73 76 1�07 0�1271 0�73 2�750 1�3 1978 26 1989 23

bi 104 75 0�74 0�1170 1�67 3�055 3�6 1894 33 1823 56
172 154 0�93 0�1179 0�59 2�984 1�2 1903 15 1861 19
178 92 0�54 0�1171 0�58 3�203 1�7 1902 14 1750 25
225 63 0�29 0�1167 0�38 2�865 1�7 1904 8 1930 28
399 52 0�14 0�1177 0�38 3�103 1�4 1909 8 1800 21
273 77 0�29 0�1154 0�46 3�113 4�1 1881 10 1795 64

sd., standard deviation.
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sa þ sp þ q in MD-s (Fig. 8a), sa þ opx þ q in MD-o

(Fig. 10a) and the melt-dominated assemblage in LD

(Fig. 12). The calculated stability range of the assem-

blage sa þ sp þ q matches the experimental constraints

(Fig. 15; Hensen, 1986; Korhonen et al., 2004; Kelsey

et al., 2004). The peak temperatures are also supported

by the contours of mineral compositions, which

includes the reintegrated Fe2O3 content (2�1–2�3 wt %)

in sill-I in MD-s (Fig. 8a), the measured maximum AlIV

(0�22) in the orthopyroxene core in MD-o (Fig. 10a), and

the reintegrated Xan (0�08–0�11) in K-feldspar (Fig. 12a)

in LD. The calculated Fe2O3(sill) in MD-s and AlIV(opx) in

MD-o are in consistence with the previous constraints

on Fe2O3(sill) of 1�9 wt % and AlIV(opx) of 9�5 wt %

(Fig. 15; Aranovich & Berman, 1996; Kawasaki et al.,

2011).

Post-peak cooling and sub-solidus
decompression
The post-peak evolution is inferred to be nearly isobaric

cooling (IBC) at 0�8–0�9 GPa. The pressure is mainly indi-

cated by the biotite- and orthopyroxene-bearing final

assemblages in MD-s/o, where orthopyroxene is absent

above �0�9 GPa and the biotite is absent below

�0�8 GPa (Figs 8a, 10a). This pressure condition is con-

sistent with the results from previous studies in the

Jining complex (e.g. Jiao & Guo, 2011; Jiao et al.,

2013a; Li & Wei, 2016, 2018).

The post-peak cooling from the peak temperature to

the fluid-absent solidus at �890 �C involves various
metamorphic reactions in the different domains. (1) The

cooling evolution in MD-s involves the formation of K-

feldspar followed by the sequential appearance of sill-II

þ g ! opx ! bi. This corresponds to the retrograde

metamorphic reactions of R1 at 1025–1045 �C, R2 at

�1010 �C, R3 at 900–1010 �C and R4 at �900 �C (Fig. 8b).

Moreover, the temperature of R2 matches well with the

values of 1000–1050 �C from the experimental results
(Bertrand et al., 1991; Das et al., 2003). In addition, the

Fe2O3 contents in sill-II record the cooling from

�1030 �C to �900 �C (Fig. 8a), and the ilm�tim pairs re-

cord re-equilibrated temperatures of 1003–1054 �C

using the Ti–Fe exchange geothermometer (Sauerzapf

et al., 2008). (2) The cooling evolution in MD-o involves

the formation of K-feldspar followed by the sequential

appearance of garnet and biotite, corresponding to the

retrograde metamorphic reactions R1 at 900–1040 �C
and R2 at �900 �C (Fig. 10b). The spectacular compos-

itional zoning of orthopyroxene in MD-o with decreas-

ing AlIV from core to rim (Fig. 5c) records the cooling

from �1120 �C to �990 �C (Fig. 10a). (3) The cooling evo-

lution in LD involves the crystallization of segregated

melts to produce K-feldspars at 1120–1140 �C, the ex-

solution of supra-solvus ternary feldspars through R1 at

910–1120 �C, and the growth of biotite at �910 �C
(Fig. 12b). The Xan(ksp) in LD records the initial cooling

from �1140 �C to �1100 �C, and the Fe2O3(sill) records

temperatures of 990–1030 �C (Fig. 12a).

The post-peak cooling evolution is followed by a de-

compression in sub-solidus conditions inferred from

the occurrence of cordierite coronae around garnet,

which yields much lower pressures as suggested by the

cordierite stability ranges (Figs 8a, 10a, 12a) and
cordierite-involved metamorphic reactions (Fig. 15).

Although there is no clear evidence to define what

the pre-peak evolution of the UHT granulite is, the com-

pression evolution from spinel-bearing assemblages to

sapphirine-bearing ones proposed, such as in Santosh

et al., (2009), is not recommended because spinel and

sapphirine are interpreted to coexist with each other as

documented by the petrography in MD-s (Fig. 4c).
Recent studies suggest that the pre-peak evolution of

the UHT granulites is dominant of heating (Yang et al.,

2014; Lobjoie et al., 2018) or decompression with heat-

ing (Li & Wei, 2016, 2018; Li et al., 2019). The decom-

pression combined with heating is supported by

plagioclase zoning with core-to-rim elevated Xan (Li &

Wei, 2016), ilmenite containing inclusions of rutile (Li &

Wei, 2018) and garnet containing spinel inclusions in its

rim domain (Li et al., 2019). Thus, the UHT granulites at
the Tianpishan area may have undergone a clockwise

P–T evolution with the peak temperatures reaching up

to 1120–1140 �C (Fig. 15).
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Fig. 15. A P–T–t path of UHT granulites from the Jining com-
plex at the Tianpishan area (thick dashed and solid arrows) and
its comparison with those in previous studies from Li & Wei
(2018) at the Tuguiwula area (LW18) and Li et al. (2019) at the
Hongshaba area (L19). Also shown are the experimental
results for constraining (i) the stability range of the sa–sp–q as-
semblage, crucial metamorphic reactions (thin solid curves)
and invariant points (solid dots) (Hensen, 1986; Kelsey et al.,
2004; Stevens et al., 1997), (ii) the P–T condition for ferric silli-
manite with 1�9 wt % Fe2O3 from Kawasaki et al. (2011) (the
solid square labelled with Fe1�9); and (iii) the isopleth of the
9�5 wt % Al2O3 in orthopyroxene from Aranovich & Berman
(1996) (the dashed curve labelled with Al9�5). The calculated
dry solidi, fluid-absent solidi and K-feldspar-in (ksp in) lines in
Figs 8a, 10a and 12a are presented with the corresponding
labels. The granite wet solidus is cited from Johannes & Holtz
(1996). The P–T ranges for the metamorphic facies of normal
granulite (NG), ultrahigh-temperature granulite (UHTG) and
high-pressure granulite (HPG) are cited from Brown (2007).

18 Journal of Petrology, 2020, Vol. 61, No. 6

D
ow

nloaded from
 https://academ

ic.oup.com
/petrology/article/61/6/egaa070/5867921 by guest on 13 O

ctober 2022



Timing of the UHT metamorphism
Most of the previous zircon U–Pb dating for UHT granu-

lite samples from the Jining complex indicate a mean

metamorphic age of 1�91–1�92 Ga (Santosh et al., 2007a,

2013; Li & Wei, 2018; Lobjoie et al., 2018; Li et al., 2019),

although a few younger ages of �1�88 Ga have also

been reported (Yang et al., 2014). Actually, all of these

age analyses show wide and continuous spectrums on

the concordia curve, for example, 1�79–1�96 Ga (Yang

et al., 2014) and 1�89–1�94 Ga (Li & Wei, 2018). Such a

wide age spectrum can be ascribed to slow cooling of

the UHT granulites (Li & Wei, 2016), and the geological

meaning of the mean age could be ambiguous.

In-situ zircon dating in this study suggests two popu-

lations of metamorphic ages at �1�94 Ga and �1�90 Ga,

respectively (Fig. 14c). The older age is defined from the

zircon grains included in perthite and sillimanite which

are inferred to be formed at the initial cooling stages

(Fig. 8) when voluminous melts crystallized at very high

temperatures (1010–1120 �C). The younger age is

acquired from the zircon grains included in biotite that

had crystallized at the late cooling stage close to the sol-

idus. These results indicate that the UHT metamorph-

ism in the Jining complex occurred at >1�94 Ga,

consistent with the conclusions made by Li & Wei

(2018), and the cooling under UHT conditions may have

lasted over 40 Ma, comparable with the durations of

slow and prolonged UHT metamorphism in terranes

such as the Rogaland, Norway (Laurent et al., 2018) and

the Napier complex, Antarctica (Clark et al., 2018).

Moreover, this timing of cooling also complies with the

exhumation age of �1�89 Ga that succeeds the UHT

metamorphism, inferred from the garnetite in the

Jining complex (Jiao et al., 2013a, 2013b).

Mineral compositional typomorphism for UHT
metamorphism
Al in orthopyroxene
Al in orthopyroxene (Al-in-opx) is one of the most wide-

ly used thermometers to estimate peak temperatures of

granulites (e.g. Harley, 1998b; Hollis & Harley, 2003;

Pattison et al., 2003), especially, almost all the extreme

UHT conditions over 1100 �C were constrained by Al-in-

opx (e.g. Harley & Motoyoshi, 2000; Moraes et al., 2002;

Sajeev & Osanai, 2004). This is because the Al diffusiv-

ity is slow as a result of its incorporation via Tschermak

ion exchange in the framework of mineral lattices (e.g.

Kelsey & Hand, 2015). Harley (2008) proposed that >

8 wt % of Al2O3 in orthopyroxene can be an indicator of

UHT conditions, whilst Kelsey (2008) presented that

y(opx) (¼ AlVI � AlIV) > 0�14 (Al2O3 > 6 wt %) in normal

pelitic rocks, and y(opx) > 0�19 (Al2O3 > 8 wt %) in Fe-

rich pelitic rocks, can indicate UHT conditions.

As the AlVI in orthopyroxene may easily vary due to

the AlVI–Fe3þ diffusion between minerals and the

change in oxygen fugacity during cooling, consequently

increasing uncertainties for temperature estimation, the

AlIV in orthopyroxene was employed as temperature

indicator in this study. The phase equilibria modelling

results presented above suggest that the Al-in-opx

thermometer mainly depends on the variation in bulk

rock composition and mineral assemblage. For in-

stance, the P–T pseudosection (Fig. 10a) shows that the

AlIV(opx) is dominantly temperature-dependent in the

lower-pressure garnet-absent and sapphirine-present

fields and is considerably influenced by pressure in the

higher-pressure garnet- and sapphirine-present fields,

while it is mostly pressure-dependent in the sapphirine-

absent field (opx�ksp�g�liq). The T–A/AFM pseudo-

section (Fig. 11a) indicates that the Al-in-opx can be

used as a good thermometer only in the Al-saturated

assemblages (A/AFM > 0�18) where an Al-rich phase

such as sapphirine or sillimanite is present, while in the

Al-undersaturated assemblages, the AlIV(opx) depends

only on the bulk-rock Al2O3 content and has nothing to

do with temperature. The T –XMg pseudosection

(Fig. 11b) shows that the AlIV(opx) increases as tem-

perature rises but varies considerably as the bulk-rock

XMg changes. For a UHT indicating orthopyroxene, the

minimum AlIV(opx) value of 0�14 is valid for the bulk-

rock XMg range of 0�7–0�8, and it will decrease in more

Mg-rich and Fe-rich rocks. In the present study, the

maximum Al2O3 of 9�5 wt % (AlIV ¼ 0�22) from a coarse-

grained orthopyroxene core yields a peak temperature

up to 1120 �C in the assemblage with opx þ sa for the

bulk-rock A/AFM ¼ 0�21 and XMg ¼ 0�75. For the same

Al2O3 content, the temperature estimates may some-

what increase or decrease with changes in bulk-rock

composition. In the assemblage with opx þ g for the

bulk-rock XMg ¼ 0�6, the isopleth of AlIV ¼ 0�22 can yield

a lower temperature of �1075 �C (Fig. 11b), which is ba-

sically consistent with the result obtained using the

opx�g Al-solubility thermometer (Harley & Green,

1982), assuming that the orthopyroxene core equili-

brated with garnet. For the experimental syntheses in

the MgO–Al2O3–SiO2 system, orthopyroxene with

9�5 wt % Al2O3 can even stabilize at temperatures over

1200 �C (Arima & Onuma, 1977).

Fe2O3 in sillimanite
Natural Al2SiO5-group minerals commonly occur as

solid solutions with Fe3þ and Mn3þ substituting for Al,

especially under low-P–high-T or highly oxidized condi-

tions (Kramm, 1979; Grew, 1980; Grambling & Williams,

1985). For example, sillimanite with various Fe2O3 con-

tents has been reported in gneissic xenoliths (Grew,

1980; Sassi et al., 2004) and high-grade metamorphic

rocks (Grew, 1980; Grambling & Williams, 1985).

Calculations indicate that decreasing pressure or

increasing temperature can increase Fe2O3 in silliman-

ite (Grambling & Williams, 1985). Statistics of both nat-

ural and synthetic samples suggest an almost linear

relationship between the Fe2O3 in sillimanite and tem-

perature (e.g. Sengupta et al., 1991; Sarkar et al., 2003;

Sassi et al., 2004; Santosh et al., 2007b; Kawasaki et al.,

2011; Shimizu et al., 2013). On the basis of this linear
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relation, we explored a symmetric a–X model aided

with DQF parameters to simulate the mixing of Fe2O3 in

sillimanite. The phase equilibria modelling results

involving this new a–X model for ferric sillimanite as

shown in Fig. 8a suggest that the isopleths of Fe2O3(sill)

show steep slopes in most assemblages, being a good

temperature indicator, and the Fe2O3 content from 1�3–

2�5 wt % indicates a temperature increase from �900 to

�1180 �C at 0�8–0�9 GPa in MD-s, which is in accordance

with the statistical data from the previous studies (e.g.

Sengupta et al., 1991; Sarkar et al., 2003; Kawasaki

et al., 2011). However, the isopleths of Fe2O3(sill) in LD

has relatively lower values than those in MD-s at the

same temperature (Fig. 12a), which may be ascribed to

the different bulk-rock XFe
3þ between the two domains

(Fig. 9; Table 5). The T � XFe
3þ pseudosection (Fig. 9)

also shows that the bulk-rock XFe
3þ takes relatively

slight effects on the Fe2O3(sill) isopleths in oxidized sit-

uations (XFe
3þ > �0�4). As a result, the Fe2O3(sill) can be

appropriately used as a temperature indicator in oxi-

dized UHT metapelites such as those in the Tianpishan

area (Li & Wei, 2018), but should be treated with caution

in reduced rocks.
Although Fe2O3 in sillimanite can be easily absorbed

by neighbouring Ti–Fe oxides (e.g. Grew, 1980), the

coarse-grained sillimanite can preserve considerable

Fe2O3 in the core, or exhibit hematite exsolutions like

that in MD-s (Fig. 4a). The reintegrated Fe2O3 of 2�1–

2�3 wt % in sill-I yields consistent peak temperature con-

ditions with those constrained by the AlIV(opx) and

Xan(ksp) isopleths. On the other hand, the exsolution-

absent sillimanite that contains the maximum Fe2O3 of

1�8 wt % yields temperatures of 1020–1040 �C (Fig. 8a).

As a result, sillimanite with exsolved hematite may sug-

gest temperature conditions >1000 �C. This corre-

sponds to the reports that sillimanite with exsolved

hematite occurs only in UHT rocks above 1000 �C

(Sarkar et al., 2003; Korhonen & Stout, 2004).

In addition, the calculated phase relations with the in-

volvement of ferric sillimanite are somewhat different

from those in Li & Wei (2018). For instance, the stability

of the sill þ opx assemblage is extended, while the sta-

bility of the sa þ q assemblage is reduced (Fig. 8a), well

consistent with the experimental results shown in

Fig. 15 (Hensen, 1986).

Anorthite in K-feldspar
UHT metapelites commonly contain perthite formed

from supra-solvus ternary high-Ca–Na K-feldspar (e.g.

Kelsey & Hand, 2015), and the reintegrated ternary feld-

spar compositions were widely used to retrieve peak

temperatures of UHT granulites (e.g. Hokada, 2001;

Pilugin et al., 2009; Jiao & Guo, 2011). However, the

temperature estimates may vary considerably due to

the application of different mixing models of feldspar

(e.g. Fuhrman & Lindsley, 1988; Elkins & Grove, 1990).

Particularly, K-feldspars with different compositional

domains yield different temperatures using the

graphical thermometry as shown in Fig. 5d. For ex-

ample, perthite from MD-s/o and LD in the present

study was reintegrated to show Xan(ksp) of 0�05–0�06

and 0�08–0�11, respectively, which yield temperatures of

1000 �C and slightly <1100 �C based on the model of

Elkins & Grove (1990), but much lower temperatures of

�900 �C and �1000 �C based on the model of Fuhrman

& Lindsley (1988) in Fig. 5d. However, the Xan(ksp) iso-

pleths with these different values yield roughly similar

temperatures of 1100 6 30 �C from the calculated pseu-

dosections (Figs 8a, 10a, 12a), approximate to the

results defined from the model of Elkins & Grove (1990)

for the higher Xan(ksp) values of 0�08–0�11. These cases

suggest that the Xan(ksp) thermometer can be influ-

enced by the diversity of bulk-rock composition. The

phase relations in Fig. 13 suggest that the Xan(ksp)

depends considerably on the bulk-rock Na2O content

besides temperature. For instance, K-feldspar in Na2O-

richer rocks can hold more CaO at the same tempera-

ture, or vice versa as a certain Xan(ksp) value can give

higher temperature estimates in Na2O-lower rocks. This

is because K-feldspar in Na2O-rich rocks (such as LD

with 3�29 mol % Na2O) may contain more Na2O than

that in Na2O-lower rocks (such as MD-s/o with 0�52–

0�68 mol % Na2O) (Tables 3–5), and the NaSi–CaAl ex-

change is much easier to occur in feldspar than the KSi–

CaAl exchange (e.g. Fuhrman & Lindsley, 1988). Hence,

the An–Ab–Or graphical thermometry should be used

carefully in view of the diverse bulk-rock compositions

and activity models.

Geologic implications
The UHT metamorphism at the Tianpishan area was

revealed to yield peak temperatures up to 1120–1140 �C

(at 0�8–0�9 GPa), implying a geothermal gradient of

35 �C/km (Fig. 15). As the peak temperatures are close

to the calculated dry solidus of �1130 �C (at 0�8–

0�9 GPa) for the studied rock (Fig. 15), the crustal rocks

may have experienced extensive diatexis as shown in

Fig 2a, where the studied restite-dominated granulites

occur only as melanocratic schlieren in melt-dominated

leucosomes, and the stratigraphic sequences are totally

dismembered. The extracted melts with peritectic min-

erals formed the massive garnet-bearing granites in the

region (Fig. 1c). The UHT rocks with extreme peak tem-

peratures above 1100 �C should limitedly occur at the

Tuguiwula, Xuwujia and Tianpishan areas (Fig. 1c; Liu

et al., 2011; Santosh et al., 2012; Wang et al., 2019), and

the peak temperatures decline to about 950–1050 �C at

the Hongsigou, Zhaojiayao, Xumayao, Helinger and

Hongshaba areas (Fig. 1c; Liu et al., 2012; Zhang et al.,

2012; Yang et al., 2014; Li & Wei, 2016; Li et al., 2019).

In-situ SHRIMP zircon U–Pb dating and phase equili-

bria modelling indicate that the UHT granulites together

with voluminous garnet-bearing granites may have

experienced a slow cooling history over 40 Ma from

>1�94 to �1�90 Ga at an 0�8–0�9 GPa crustal level. Such a

long-term stagnation of highly melted crustal rocks at a
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deep level can be attributed to the following facts: (1)

the highly melted crustal lithosome like that shown in

Fig. 2a and the garnet-bearing granites with peritectic

garnet up to 25% (Wang et al., 2018) are calculated to

share similar densities of 2�73– 2�71 g/cm3, even slightly

greater than the average density of 2�7 g/cm3 for contin-

ental crust (Jamieson & Beaumont, 2011); and (2) the

melts with low water but abundant suspended restites

and peritectic minerals may have a much higher viscos-

ity according to the Einstein–Roscoe equation (Roscoe,

1952; Shaw, 1972), making the melts stagnant but not

extractable. As a consequence, both the granitic mag-

mas and the highly melted crustal lithosome did not as-

cend upward, but underwent parautochthonous

crystallization and isobaric cooling.

The tectonic regime for the UHT metamorphism in

the Jining complex is controversially discussed, as

opinions vary from a plume event (e.g. Santosh et al.,

2008), ridge subduction (e.g. Peng et al., 2010; Guo

et al., 2012; Santosh et al., 2012), to post-collision man-

tle upwelling together with mafic magma emplacement

(e.g. Zhao, 2009; Li & Wei, 2018). Previous studies sug-

gest that the UHT metamorphism in the Jining complex

may have been preceded by an orogenic crustal thick-

ening event that occurred at 1�98–1�96 Ga (Li et al., 2011;

Yin et al., 2011). This is supported by a high-pressure

granulite facies metamorphism with clockwise P–T path

(e.g. Zhou et al., 2010) and anatectic leucogranite (Guo

et al., 1999). Following the post-orogenic crustal exten-

sion at �1�95 Ga (e.g. Dan et al., 2012; Wan et al., 2013),

the UHT metamorphism was considered to occur based

on its clockwise P–T paths (e.g. Li & Wei, 2018) and the

zircon dates in this study. It may be accompanied with

gabbronorite emplacement at �1�93 Ga (Peng et al.,

2010) and garnet granite formation at 1�92–1�90 Ga

(Zhong et al., 2007; Wang et al., 2018; Shi et al., 2018).

Moreover, the gabbronorites were estimated to have in-

trusive temperatures up to 1400 �C, with an anomalous-

ly high mantle potential temperature of 1550 �C,

consistent with a plume activity (Peng et al., 2010;

Gibson et al., 2006). Therefore, we prefer that the ex-

treme UHT metamorphism in the Jining complex may

have been triggered by the advective heating of intra-

plated hyperthermal mafic magma together with a

plume-related hot mantle upwelling (e.g. Wang et al.,

2019), following an orogenic crustal thickening event.

This is consistent with the limited occurrences of UHT

granulites with peak temperatures above 1100 �C close

to mafic intrusions.
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APPENDIX

The stoichiometric formula of ferric-sillimanite is coded

as (FexAl1-x)AlSiO5 with x ranging from 0–1, which

involves Fe3þ–AlVI substitution on the octahedral site

(e.g. Grambling & Williams, 1985; Schreyer et al., 2004).

It is a solid solution between Al2SiO5 (sill) and FeAlSiO5

(fsill) in symmetric formalism (SF; Powell & Holland,

1993). The SF interaction energy adopted is W(sill, fsill) ¼
1 kJ calculated by W–w relations (Powell & Holland,

1993), W(sill, fsill) ¼ woct (Al, Fe3þ) ¼ 1 kJ, where woct
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(Al, Fe3þ) is obtained from W(cz, ep), W(mgts, fopx), W(east,

fbi) and W(spr5, ospr) in previously coded minerals (ep,

opx, bi and sa; Holland & Powell, 2011; White et al.,

2014a; Wheller & Powell, 2014). The Gibbs energy of
end-member FeAlSiO5 is made with Gfsill ¼ Gsill þ
1=2 Gandr—1=2 Ggr þ DHfsill, where DHfsill refers DQF in

THERMOCALC (White et al., 2014a) and equals to

DfHfsill—(DfHsill þ 1=2DfHandr – 1=2DfHgr) following Hess’s

law. The enthalpy of formation DfHfsill approximates the

DfH sum of the most stable oxides of relevant elements

(DfHfsill � DfHq þ 1=2DfHcor þ 1=3DfHmt). Based on the

thermodynamic dataset of Holland & Powell (2011), the

parameter is estimated to be DQF ¼ DHfsill ¼ 29.06 kJ/
mol, which corresponds to the experimentally con-

strained DH of ferric-corundum (29.0 6 2.5 kJ/mol;

Majzlan et al., 2002) due to the negligible enthalpy

change on the combination of quartz and corundum

(�0.5 kJ; Charlu et al., 1975).
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