805 research outputs found
Are Fruit and Vegetable Prices Non-linear Stationary? Evidence from Smooth Transition Autoregressive Models
Over the last decade, there has been a growing interest in investigating agricultural commodity prices. We apply two more powerful smooth transition autoregressive models of the non-linear unit-root test - namely, the ESTAR model of Kapetanios et al. [Journal of Econometrics (2003)] and the LSTAR model of Leybourne, et a . [Journal of Time Series Analysis (1998)] - with a view to investigating non-linear stationarity for the retail prices of 8 major kinds of fruit and 18 major kinds of vegetable in Taiwan. The empirical evidence clearly finds that the Kapetanios et al. model provides solid, substantive evidence in favor of a non-linear mean-reverting adjustment for the individual price of 4 kinds of fruit and 5 kinds of vegetable. However, when we employ the Leybourne et al. model, we find that any such similar evidence of non-linear stationarity is considerably weaker. Finally, compared with the traditional linear unit root tests, it is important to note here that, all in all, the non-linear unit root tests do indeed provide much more evidence of the stationarity, albeit to varying degrees. This paper offers some policy implications.Smooth transition autoregressive model; Non-linear stationary; Fruit price; Vegetable price; Taiwan
Recommended from our members
A Network of microRNAs Acts to Promote Cell Cycle Exit and Differentiation of Human Pancreatic Endocrine Cells.
Pancreatic endocrine cell differentiation is orchestrated by the action of transcription factors that operate in a gene regulatory network to activate endocrine lineage genes and repress lineage-inappropriate genes. MicroRNAs (miRNAs) are important modulators of gene expression, yet their role in endocrine cell differentiation has not been systematically explored. Here we characterize miRNA-regulatory networks active in human endocrine cell differentiation by combining small RNA sequencing, miRNA over-expression, and network modeling approaches. Our analysis identified Let-7g, Let-7a, miR-200a, miR-127, and miR-375 as endocrine-enriched miRNAs that drive endocrine cell differentiation-associated gene expression changes. These miRNAs are predicted to target different transcription factors, which converge on genes involved in cell cycle regulation. When expressed in human embryonic stem cell-derived pancreatic progenitors, these miRNAs induce cell cycle exit and promote endocrine cell differentiation. Our study delineates the role of miRNAs in human endocrine cell differentiation and identifies miRNAs that could facilitate endocrine cell reprogramming
Neurosurgical interventions for patients with nasopharyngeal carcinoma: a single institution experience
BACKGROUND: Nasopharyngeal carcinoma (NPC) is a frequent head and neck cancer in southern China and Southeast Asia. The majority of NPC patients are managed by radiation oncologists, medical oncologists and head and neck surgeons. Actually, neurosurgical interventions are warranted under specific circumstances. In this article, we described our experience as neurosurgeons in the management of NPC patients. METHODS: Medical records of NPC patients who received neurosurgical procedure at Sun Yat-sen University Cancer Center were reviewed. RESULTS: Twenty-seven patients were identified. Among 27 cases, neurosurgical procedures were performed in 18 (66.7%) with radiation-induced temporal necrosis, 2 (7.4%) with radiation-induced sarcoma, 4 (14.8%) with synchronous NPC with primary brain tumors, 2 (7.4%) with recurrent NPC involving skull base, and 1 (3.7%) with metachronous skull eosinophilic granuloma, respectively. The diagnosis is challenging in specific cases and initial misdiagnoses were found in 6 (22.2%) patients. CONCLUSIONS: For NPC patients with intracranial or skull lesions, the initial diagnosis can be occasionally difficult because of the presence or a history of NPC and related treatment. Unawareness of these entities can result in misdiagnosis and subsequent improper treatment. Neurosurgical interventions are necessary for the diagnosis and treatment for these patients
The CDEX-1 1 kg Point-Contact Germanium Detector for Low Mass Dark Matter Searches
The CDEX Collaboration has been established for direct detection of light
dark matter particles, using ultra-low energy threshold p-type point-contact
germanium detectors, in China JinPing underground Laboratory (CJPL). The first
1 kg point-contact germanium detector with a sub-keV energy threshold has been
tested in a passive shielding system located in CJPL. The outputs from both the
point-contact p+ electrode and the outside n+ electrode make it possible to
scan the lower energy range of less than 1 keV and at the same time to detect
the higher energy range up to 3 MeV. The outputs from both p+ and n+ electrode
may also provide a more powerful method for signal discrimination for dark
matter experiment. Some key parameters, including energy resolution, dead time,
decay times of internal X-rays, and system stability, have been tested and
measured. The results show that the 1 kg point-contact germanium detector,
together with its shielding system and electronics, can run smoothly with good
performances. This detector system will be deployed for dark matter search
experiments.Comment: 6 pages, 8 figure
Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries
The electrochemical kinetics of battery electrodes at the single-particle scale are measured as a function of state-of-charge, and interpreted with the aid of concurrent transmission X-ray microscopy (TXM) of the evolving particle microstructure. An electrochemical cell operating with near-picoampere current resolution is used to characterize single secondary particles of two widely-used cathode compounds, NMC333 and NCA. Interfacial charge transfer kinetics are found to vary by two orders of magnitude with state-of-charge (SOC) in both materials, but the origin of the SOC dependence differs greatly. NCA behavior is dominated by electrochemically-induced microfracture, although thin binder coatings significantly ameliorate mechanical degradation, while NMC333 demonstrates strongly increasing interfacial reaction rates with SOC for chemical reasons. Micro-PITT is used to separate interfacial and bulk transport rates, and show that for commercially relevant particle sizes, interfacial transport is rate-limiting at low SOC, while mixed-control dominates at higher SOC. These results provide mechanistic insight into the mesoscale kinetics of ion intercalation compounds, which can guide the development of high performance rechargeable batteries
Lack of RNase L Attenuates Macrophage Functions
Background: Macrophages are one of the major cell types in innate immunity against microbial infection. It is believed that the expression of proinflammatory genes such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL–6, and cyclooxygenase-2 (Cox-2) by macrophages is also crucial for activation of both innate and adaptive immunities. RNase L is an interferon (IFN) inducible enzyme which is highly expressed in macrophages. It has been demonstrated that RNase L regulates the expression of certain inflammatory genes. However, its role in macrophage function is largely unknown. Methodology: Bone marrow-derived macrophages (BMMs) were generated from RNase L+/+and −/− mice. The migration of BMMs was analyzed by using Transwell migration assays. Endocytosis and phagocytosis of macrophages were assessed by using fluorescein isothiocyanate (FITC)-Dextran 40,000 and FITC-E. coli bacteria, respectively. The expression of inflammatory genes was determined by Western Blot and ELISA. The promoter activity of Cox-2 was measured by luciferase reporter assays. Conclusions/Findings: Lack of RNase L significantly decreased the migration of BMMs induced by M-CSF, but at a less extent by GM-CSF and chemokine C-C motif ligand-2 (CCL2). Interestingly, RNase L deficient BMMs showed a significant reduction of endocytic activity to FITC-Dextran 40,000, but no any obvious effect on their phagocytic activity to FITC-bacteria under the same condition. RNase L impacts the expression of certain genes related to cell migration and inflammation such as transforming growth factor (TGF)-β, IL-1β, IL-10, CCL2 and Cox-2. Furthermore, the functional analysis of the Cox-2 promoter revealed that RNase L regulated the expression of Cox-2 in macrophages at its transcriptional level. Taken together, our findings provide direct evidence showing that RNase L contributes to innate immunity through regulating macrophage functions
Adsorbate and defect effects on electronic and transport properties of gold nanotubes
First-principles calculations have been performed to study the effects of
adsorbates (CO molecules and O atoms) and defects on electronic structures and
transport properties of Au nanotubes (Au(5, 3) and Au(5, 5)). For CO
adsorption, various adsorption sites of CO on the Au tubes were considered. The
vibrational frequency of the CO molecule was found to be very different for two
nearly degenerate stable adsorption configurations of Au(5, 3), implying the
possibility of distinguishing these two configurations via measuring the
vibrational frequency of CO in experiments. After CO adsorption, the
conductance of Au(5, 3) decreases by 0.9G0 and the conductance of Au(5, 5)
decreases by approximately 0.5G0. For O-adsorbed Au tubes, O atoms strongly
interact with Au tubes, leading to around 2G0 of drop in conductance for both
Au tubes. These results may have implications for Au-tube-based chemical
sensing. When a monovacancy defect is present, we found that, for both tubes,
the conductance decreases by around 1G0. Another type of defect arising from
the adhesion of one Au atom is also considered. For this case, it is found
that, for the Au(5, 3) tube, the defect decreases the conductance by nearly
1G0, whereas for Au(5, 5), the decrease in conductance is only 0.3G0.Comment: 7 pages, 8 figure
- …
