818 research outputs found

    Inferring gene regulatory networks from asynchronous microarray data with AIRnet

    Get PDF
    Background Modern approaches to treating genetic disorders, cancers and even epidemics rely on a detailed understanding of the underlying gene signaling network. Previous work has used time series microarray data to infer gene signaling networks given a large number of accurate time series samples. Microarray data available for many biological experiments is limited to a small number of arrays with little or no time series guarantees. When several samples are averaged to examine differences in mean value between a diseased and normal state, information from individual samples that could indicate a gene relationship can be lost. Results Asynchronous Inference of Regulatory Networks (AIRnet) provides gene signaling network inference using more practical assumptions about the microarray data. By learning correlation patterns for the changes in microarray values from all pairs of samples, accurate network reconstructions can be performed with data that is normally available in microarray experiments. Conclusions By focussing on the changes between microarray samples, instead of absolute values, increased information can be gleaned from expression data

    Phosducin-like protein 1 is essential for G-protein assembly and signaling in retinal rod photoreceptors

    Get PDF
    G protein β subunits perform essential neuronal functions as part of G protein βγ and Gβ(5)-RGS (Regulators of G protein Signaling) complexes. Both Gβγ and Gβ(5)-RGS are obligate dimers that are thought to require the assistance of the cytosolic chaperonin CCT and a co-chaperone, phosducin-like protein 1 (PhLP1) for dimer formation. To test this hypothesis in vivo, we deleted the Phlp1 gene in mouse (Mus musculus) retinal rod photoreceptor cells and measured the effects on G protein biogenesis and visual signal transduction. In the PhLP1-depleted rods, Gβγ dimer formation was decreased 50-fold, resulting in a more than 10-fold decrease in light sensitivity. Moreover, a 20-fold reduction in Gβ(5) and RGS9-1 expression was also observed, causing a 15-fold delay in the shutoff of light responses. These findings conclusively demonstrate in vivo that PhLP1 is required for the folding and assembly of both Gβγ and Gβ(5)-RGS9

    Methane dynamics in an estuarine brackish Cyperus malaccensis marsh: Production and porewater concentration in soils, and net emissions to the atmosphere over five years

    Get PDF
    Wetlands can potentially affect global climate change through their role in modulating the atmospheric concentrations of methane (CH4). Their overall CH4 emissions, however, remain the greatest uncertainty in the global CH4 budget. One reason for this is the paucity of long-term field measurements to characterize the variability of CH4 emissions from different types of wetlands. In this study, we quantified CH4 emissions from a brackish, oligohaline Cyperus malaccensis marsh ecosystem in the Min River Estuary in southeast China over five years. Our results showed substantial temporal variability of CH4 emissions from this brackish marsh, with hourly fluxes ranging from 0.7 ± 0.6 to 5.1 ± 3.7 mg m−2 h−1 (mean ± 1 SD) during the study period. The inter-annual variability of CH4 emissions was significantly correlated with changes in soil temperature, precipitation and salinity, which highlighted the importance of long-term observations in understanding wetland CH4 dynamics. Distinct seasonal patterns in soil CH4 production rates and porewater CH4 concentrations also were observed, and were both positively correlated with CH4 emissions. The seasonal variations of CH4 emissions and production were highly correlated with salinity and porewater sulfate levels. The mean annual CH4 efflux from our site over the five-year period was 23.8 ± 18.1 g CH4 m−2 yr−1, indicating that subtropical brackish tidal marsh ecosystems could release a large amount of CH4 into the atmosphere. Our findings further highlight the need to obtain high-frequency and continuous field measurements over the long term at multiple spatial scales to improve our current estimates of wetland CH4 emissions

    NOXA-Induced Alterations in the Bax/Smac Axis Enhance Sensitivity of Ovarian Cancer Cells to Cisplatin

    Get PDF
    Ovarian cancer is the most common cause of death from gynecologic malignancy. Deregulation of p53 and/or p73-associated apoptotic pathways contribute to the platinum-based resistance in ovarian cancer. NOXA, a pro-apoptotic BH3-only protein, is identified as a transcription target of p53 and/or p73. In this study, we found that genetic variants of Bcl-2 proteins exist among cisplatin-sensitive and -resistant ovarian cancer cells, and the responses of NOXA and Bax to cisplatin are regulated mainly by p53. We further evaluated the effect of NOXA on cisplatin. NOXA induced apoptosis and sensitized A2780s and SKOV3 cells to cisplatin in vitro and in vivo. The effects were mediated by elevated Bax expression, enhanced caspase activation, release of Cyt C and Smac into the cytosol. Furthermore, gene silencing of Bax or Smac significantly attenuated NOXA and/or cisplatin-induced apoptosis in chemosensitive A2780s cells, whereas overexpression of Bax or addition of Smac-N7 peptide significantly increased NOXA and/or cisplatin-induced apoptosis in chemoresistant SKOV3 cells. To our knowledge, these data suggest a new mechanism by which NOXA chemosensitized ovarian cancer cells to cisplatin by inducing alterations in the Bax/Smac axis. Taken together, our findings show that NOXA is potentially useful as a chemosensitizer in ovarian cancer therapy

    Integrated Molecular Characterization of Uterine Carcinosarcoma

    Get PDF
    SummaryWe performed genomic, epigenomic, transcriptomic, and proteomic characterizations of uterine carcinosarcomas (UCSs). Cohort samples had extensive copy-number alterations and highly recurrent somatic mutations. Frequent mutations were found in TP53, PTEN, PIK3CA, PPP2R1A, FBXW7, and KRAS, similar to endometrioid and serous uterine carcinomas. Transcriptome sequencing identified a strong epithelial-to-mesenchymal transition (EMT) gene signature in a subset of cases that was attributable to epigenetic alterations at microRNA promoters. The range of EMT scores in UCS was the largest among all tumor types studied via The Cancer Genome Atlas. UCSs shared proteomic features with gynecologic carcinomas and sarcomas with intermediate EMT features. Multiple somatic mutations and copy-number alterations in genes that are therapeutic targets were identified

    Measurement of the Ratio of b Quark Production Cross Sections in Antiproton-Proton Collisions at 630 GeV and 1800 GeV

    Full text link
    We report a measurement of the ratio of the bottom quark production cross section in antiproton-proton collisions at 630 GeV to 1800 GeV using bottom quarks with transverse momenta greater than 10.75 GeV identified through their semileptonic decays and long lifetimes. The measured ratio sigma(630)/sigma(1800) = 0.171 +/- .024 +/- .012 is in good agreement with next-to-leading order (NLO) quantum chromodynamics (QCD)
    corecore