63 research outputs found

    Histopathological changes in female rabbits administered with aqueous extract of Calotropis procera

    Get PDF
    Calotropis procera is an evergreen perennial shrub, which is found mainly in the arid regions and produces copious latex when cut. It has been reported to possess medicinal properties but equally pose deleterious effect in animals. In a bid to exploit its pharmacological properties, it was necessary to ascertain its level of safety. A toxicological evaluation of the aqueous extract of fresh leaves of the plant was therefore conducted in the more sensitive female rabbits of the same weight range. Low levels of phytochemicals (alkaloids, saponins, tannins, cardiac glycosides and flavonoids) were found, while elemental analyses showed traces of iron, lead, sodium, and potassium in concentrations of 0.23, 0.03, 0.82 and 9.5 mg/g, respectively. Acute toxicity study was conducted with oral administration of 200, 400, 800 and 1600 mg/kg of the extract once to groups I, II, III and IV, respectively with a 24 h observation period. Clinical signs such as mouth chewing, photophobia, bradycardia, coughing, vomiting and convulsion amongst others were noticed. Four rabbits died within 24 h and LD50 was estimated (940 mg/kg). 80, 40 and 20 mg/kg of the extract were administered daily to groups I, II, and III, respectively, during sub-acute toxicity study for 14 days. Grossly, catarrhal enteritis and mesenteric congestion of the small intestines, congestion of the lungs, hepatization and paleness of the liver, congestion and pallor of the kidney cortex, and congestion of the meninges were noticed. Histopathological examination of the tissues revealed mild pulmonary oedema and peribronchial lymphocytic infiltration of the lungs, hepatization of the liver, disruption of cardiac architecture, generalised cell necrosis and erosion of the villi of the small intestine. All the rabbits that survived gained weight, which is indicative of some nutrient value in the extract. It was concluded that the extract had dose-dependent deleterious effects on the tissues as higher dose groups were more affected. Hence, it is evident that sub-chronic toxicity studies would reveal greater lesions to better ascertain extent of damage.Key words: Calotropis procera, phytochemical, histopathology, toxicity, lesions, tissues, organs

    Cancer associated fibroblasts predict for poor outcome and promote periostin-dependent invasion in oesophageal adenocarcinoma

    Get PDF
    Interactions between cancer cells and cancer-associated fibroblasts (CAF) play an important role in tumour development and progression. In this study we investigated the functional role of CAF in oesophageal adenocarcinoma (EAC). We used immunochemistry to analyse a cohort of EAC patients (183 patients) for CAF markers related to disease mortality. We characterized CAF and normal oesophageal fibroblasts (NOF) using western blotting, immunofluorescence and gel contraction. Transwell assays, 3-D organotypic culture and xenograft models were used to examine effects on EAC cell function, and dissect molecular mechanisms regulating invasion. Most EAC (93%) contained CAF with a myofibroblastic (?-SMA-positive) phenotype, which correlated significantly with poor survival (p?=?0.016; HR 7. 1 (1.7-29.4). Primary CAF, isolated from EAC, have a contractile, myofibroblastic phenotype, and promote EAC cell invasion in vitro (Transwell assays, p?=?<0.05; organotypic culture, p?<?0.001) and in vivo (p?=?<0.05). In vitro, this pro-invasive effect is modulated through the matricellular protein periostin. Periostin is secreted by CAF, and acts as a ligand for EAC cell integrins ?v?3 and ?v?5, promoting activation of the PI3kinase/Akt pathway. In patient samples, periostin expression at the tumour cell/stromal interface correlates with poor overall and disease-free survival. Our study highlights the importance of the tumour stroma in EAC progression. Paracrine interaction between CAF-secreted periostin and EAC-expressed integrins results in PI3 kinase/Akt activation and increased tumour cell invasion. Most EAC contain a myofibroblastic CAF-rich stroma; this may explain the aggressive, highly infiltrative nature of the disease, and suggests that stromal targeting may produce therapeutic benefit in EAC patient

    Aligning a New Reference Genetic Map of Lupinus angustifolius with the Genome Sequence of the Model Legume, Lotus japonicus

    Get PDF
    We have developed a dense reference genetic map of Lupinus angustifolius (2n = 40) based on a set of 106 publicly available recombinant inbred lines derived from a cross between domesticated and wild parental lines. The map comprised 1090 loci in 20 linkage groups and three small clusters, drawing together data from several previous mapping publications plus almost 200 new markers, of which 63 were gene-based markers. A total of 171 mainly gene-based, sequence-tagged site loci served as bridging points for comparing the Lu. angustifolius genome with the genome sequence of the model legume, Lotus japonicus via BLASTn homology searching. Comparative analysis indicated that the genomes of Lu. angustifolius and Lo. japonicus are highly diverged structurally but with significant regions of conserved synteny including the region of the Lu. angustifolius genome containing the pod-shatter resistance gene, lentus. We discuss the potential of synteny analysis for identifying candidate genes for domestication traits in Lu. angustifolius and in improving our understanding of Fabaceae genome evolution

    A microfluidic device with fluorimetric detection for intracellular components analysis

    Get PDF
    An integrated microfluidic system that coupled lysis of two cell lines: L929 fibroblasts and A549 epithelial cells, with fluorescence-based enzyme assay was developed to determine β-glucocerebrosidase activity. The microdevice fabricated in poly(dimethylsiloxane) consists of three main parts: a chemical cell lysis zone based on the sheath flow geometry, a micromeander and an optical fibers detection zone. Unlike many methods described in literature that are designed to analyse intracellular components, the presented system enables to perform enzyme assays just after cell lysis process. It reduces the effect of proteases released in lysis process on determined enzymes. Glucocerebrosidase activity, the diagnostic marker for Gaucher’s disease, is the most commonly measured in leukocytes and fibroblasts using 4-methylumbelliferyl-β-D-glucopyranoside as synthetic β-glucoside. The enzyme cleavage releases the fluorescent product, i.e. 4-methylumbelliferone, and its fluorescence is measured as a function of time. The method of enzyme activity determination described in this paper was adapted for flow measurements in the microdevice. The curve of the enzymatic reaction advancement was prepared for three reaction times obtained from application of different flow rates of solutions introduced to the microsystem. Afterwards, determined β-glucocerebrosidase activity was recalculated with regard to 105 cells present in samples used for the tests. The obtained results were compared with a cuvette-based measurements. The lysosomal β-glucosidase activities determined in the microsystem were in good correlation with the values determined during macro-scale measurements

    Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines

    Get PDF
    Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours’ biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription–quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes

    Hypofibrinolysis in diabetes: a therapeutic target for the reduction of cardiovascular risk

    Get PDF
    An enhanced thrombotic environment and premature atherosclerosis are key factors for the increased cardiovascular risk in diabetes. The occlusive vascular thrombus, formed secondary to interactions between platelets and coagulation proteins, is composed of a skeleton of fibrin fibres with cellular elements embedded in this network. Diabetes is characterised by quantitative and qualitative changes in coagulation proteins, which collectively increase resistance to fibrinolysis, consequently augmenting thrombosis risk. Current long-term therapies to prevent arterial occlusion in diabetes are focussed on anti-platelet agents, a strategy that fails to address the contribution of coagulation proteins to the enhanced thrombotic milieu. Moreover, antiplatelet treatment is associated with bleeding complications, particularly with newer agents and more aggressive combination therapies, questioning the safety of this approach. Therefore, to safely control thrombosis risk in diabetes, an alternative approach is required with the fibrin network representing a credible therapeutic target. In the current review, we address diabetes-specific mechanistic pathways responsible for hypofibrinolysis including the role of clot structure, defects in the fibrinolytic system and increased incorporation of anti-fibrinolytic proteins into the clot. Future anti-thrombotic therapeutic options are discussed with special emphasis on the potential advantages of modulating incorporation of the anti-fibrinolytic proteins into fibrin networks. This latter approach carries theoretical advantages, including specificity for diabetes, ability to target a particular protein with a possible favourable risk of bleeding. The development of alternative treatment strategies to better control residual thrombosis risk in diabetes will help to reduce vascular events, which remain the main cause of mortality in this condition

    Cigarette smoking in Wisconsin: the influence of race, ethnicity, and socioeconomics.

    No full text
    https://www.researchgate.net/publication/11852347_Cigarette_smoking_in_Wisconsin_The_influence_of_race_ethnicity_and_socioeconomic
    corecore