1,887 research outputs found

    When Ad Is Selfie: The Effect of Selfie on the Effectiveness of Ad Endorsers in Social Media

    Get PDF
    Selfie has proliferated in social media and capture the attentions from businesses. Although selfie has been leveraged into social commerce, little literature has understood and explained the effect of selfie. To solve this gap, this paper considers the effect of selfie on the effectiveness of ad endorsers and the moderating role of product type. We interpret selfie as a form of self-disclosure and study three types of ad endorsers: celebrities, experts and typical consumers. Given the nature of selfie and ad endorsers, we hypothesize that selfie enhance the effectiveness of celebrities and typical consumers, not experts. Besides, we also hypothesize that selfie improve the effectiveness of celebrities and typical consumer for hedonic product more than for utilitarian product, and experts is good for utilitarian product. Towards hypotheses in our paper, we plan to employ lab and field experimental method to test them. Potential theoretical and practical implications have been discussed

    PARENTAGE OF OVERLAPPING OFFSPRING OF AN ARBOREAL-BREEDING FROG WITH NO NEST DEFENSE: IMPLICATIONS FOR NEST SITE SELECTION AND REPRODUCTIVE STRATEGY

    Get PDF
    Overlapping offspring occurs when eggs are laid in a nest containing offspring from earlier reproduction. To unveil the parentage between overlapping offspring and parents is critical in understanding oviposition site selection and the reproductive strategies of parents. Amplectant pairs of an arboreal-breeding frog, Kurixalus eiffingeri, lay eggs in tadpole-occupied nests where offspring of different life stages (embryos and tadpoles) coexist. We used five microsatellite DNA markers to assess the parentage between parents and overlapping offspring. Results showed varied parentage patterns, which may differ from the phenomenon of overlapping egg clutches reported earlier. Parentage analyses showed that only 58 and 25% of the tadpole-occupied stumps were reused by the same male and female respectively, partially confirming our prediction. Re-nesting by the same individual was more common in males than females, which is most likely related to the cost of tadpole feeding and/or feeding schemes of females. On the other hand, results of parentage analyses showed that about 42 and 75 % of male and female respectively bred in tadpole-occupied stumps where tadpoles were genetically unrelated. Results of a nest-choice experiment revealed that 40% of frogs chose tadpole-occupied bamboo cups when we presented identical stumps, without or with tadpoles, suggesting that the habitat saturation hypothesis does not fully explain why frogs used the tadpole-occupied stumps. Several possible benefits of overlapping offspring with different life stages were proposed. Our study highlights the importance of integrating molecular data with field observations to better understand the reproductive biology and nest site selection of anuran amphibians

    PARENTAGE OF OVERLAPPING OFFSPRING OF AN ARBOREAL-BREEDING FROG WITH NO NEST DEFENSE: IMPLICATIONS FOR NEST SITE SELECTION AND REPRODUCTIVE STRATEGY

    Get PDF
    Overlapping offspring occurs when eggs are laid in a nest containing offspring from earlier reproduction. To unveil the parentage between overlapping offspring and parents is critical in understanding oviposition site selection and the reproductive strategies of parents. Amplectant pairs of an arboreal-breeding frog, Kurixalus eiffingeri, lay eggs in tadpole-occupied nests where offspring of different life stages (embryos and tadpoles) coexist. We used five microsatellite DNA markers to assess the parentage between parents and overlapping offspring. Results showed varied parentage patterns, which may differ from the phenomenon of overlapping egg clutches reported earlier. Parentage analyses showed that only 58 and 25% of the tadpole-occupied stumps were reused by the same male and female respectively, partially confirming our prediction. Re-nesting by the same individual was more common in males than females, which is most likely related to the cost of tadpole feeding and/or feeding schemes of females. On the other hand, results of parentage analyses showed that about 42 and 75 % of male and female respectively bred in tadpole-occupied stumps where tadpoles were genetically unrelated. Results of a nest-choice experiment revealed that 40% of frogs chose tadpole-occupied bamboo cups when we presented identical stumps, without or with tadpoles, suggesting that the habitat saturation hypothesis does not fully explain why frogs used the tadpole-occupied stumps. Several possible benefits of overlapping offspring with different life stages were proposed. Our study highlights the importance of integrating molecular data with field observations to better understand the reproductive biology and nest site selection of anuran amphibians

    Modulation of nucleosome-binding activity of FACT by poly(ADP-ribosyl)ation

    Get PDF
    Chromatin-modifying factors play key roles in transcription, DNA replication and DNA repair. Post-translational modification of these proteins is largely responsible for regulating their activity. The FACT (facilitates chromatin transcription) complex, a heterodimer of hSpt16 and SSRP1, is a chromatin structure modulator whose involvement in transcription and DNA replication has been reported. Here we show that nucleosome binding activity of FACT complex is regulated by poly(ADP-ribosyl)ation. hSpt16, the large subunit of FACT, is poly(ADP-ribosyl)ated by poly(ADP-ribose) polymerase-1 (PARP-1) resulting from physical interaction between these two proteins. The level of hSpt16 poly(ADP-ribosyl)ation is elevated after genotoxic treatment and coincides with the activation of PARP-1. The enhanced hSpt16 poly(ADP-ribosyl)ation level correlates with the dissociation of FACT from chromatin in response to DNA damage. Our findings suggest that poly(ADP-ribosyl)ation of hSpt16 by PARP-1 play regulatory roles for FACT-mediated chromatin remodeling

    Serum Levels of Brain-Derived Neurotrophic Factor and Insulin-Like Growth Factor 1 Are Associated With Autonomic Dysfunction and Impaired Cerebral Autoregulation in Patients With Epilepsy

    Get PDF
    Background: Brain-derived neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1) may regulate the autonomic nervous system (ANS) in epilepsy. The present study investigated the role of IGF-1 and BDNF in the regulation of autonomic functions and cerebral autoregulation in patients with epilepsy.Methods: A total of 57 patients with focal epilepsy and 35 healthy controls were evaluated and their sudomotor, cardiovagal, and adrenergic functions were assessed using a battery of ANS function tests, including the deep breathing, Valsalva maneuver, head-up tilting, and Q-sweat tests. Cerebral autoregulation was measured by transcranial doppler during the breath-holding test and the Valsalva maneuver. Interictal serum levels of BDNF and IGF-1 were measured with enzyme-linked immunosorbent assay kits.Results: During interictal period, reduced serum levels of BDNF and IGF-1, impaired autonomic functions, and decreased cerebral autoregulation were noted in patients with epilepsy compared with healthy controls. Reduced serum levels of BDNF correlated with age, adrenergic and sudomotor function, overall autonomic dysfunction, and the autoregulation index calculated in Phase II of the Valsalva maneuver, and showed associations with focal to bilateral tonic-clonic seizures. Reduced serum levels of IGF-1 were found to correlate with age and cardiovagal function, a parameter of cerebral autoregulation (the breath-hold index). Patients with a longer history of epilepsy, higher seizure frequency, and temporal lobe epilepsy had lower serum levels of IGF-1.Conclusions: Long-term epilepsy and severe epilepsy, particularly temporal lobe epilepsy, may perturb BDNF and IGF-1 signaling in the central autonomic system, contributing to the autonomic dysfunction and impaired cerebral autoregulation observed in patients with focal epilepsy

    Interpretation of spin wave modes in Co/Ag nanodot arrays probed by broadband ferromagnetic resonance

    Full text link
    Ferromagnetic resonance (FMR) and the measurement of magnetization dynamics in general have become sophisticated tools for the study of magnetic systems at the nanoscale. Nanosystems, such as the nanodots of this study, are technologically important structures, which find applications in a number of devices, such as magnetic storage and spintronic systems. In this work, we describe the detailed investigation of cobalt nanodots with a 200 nm diameter arranged in a square pitch array with a periodicity of 400 nm. Due to their size, such structures can support standing spin-wave modes, which can have complex spectral responses. To interpret the experimentally measured broadband FMR, we are comparing the spectra of the nanoarray structure with the unpatterned film of identical thickness. This allows us to obtain the general magnetic properties of the system, such as the magnetization, g-factor and magnetic anisotropy. We then use state-of-the-art simulations of the dynamic response to identify the nature of the excitation modes. This allows us to assess the boundary conditions for the system. We then proceed to calculate the spectral response of our system, for which we obtained good agreement. Indeed, our procedure provides a high degree of confidence, since we have interpreted all the experimental data to a good degree of accuracy. In presenting this work, we provide a full description of the theoretical framework and its application to our system, and we also describe in detail the novel simulation method used.Comment: 20 pages, 14 figure

    Production of Active Nonglycosylated Recombinant B-Chain of Type-2 Ribosome-Inactivating Protein from Viscum articulatum and Its Biological Effects on Peripheral Blood Mononuclear Cells

    Get PDF
    Type-2 ribosome-inactivating proteins, composed of a toxic A-chain and lectin-like B-chain, display various biological functions, including cytotoxicity and immunomodulation. We here cloned the lectin-like B-chain encoding fragment of a newly identified type-2 RIP gene, articulatin gene, from Viscum articulatum, into a bacterial expression vector to obtain nonglycosylated recombinant protein expressed in inclusion bodies. After purification and protein refolding, soluble refolded recombinant articulatin B-chain (rATB) showed lectin activity specific toward galactoside moiety and was stably maintained while stored in low ionic strength solution. Despite lacking glycosylation, rATB actively bound leukocytes with preferential binding to monocytes and in vitro stimulated PBMCs to release cytokines without obvious cytotoxicity. These results implicated such a B-chain fragment as a potential immunomodulator
    corecore