993 research outputs found
Optically bound microscopic particles in one dimension
Counter-propagating light fields have the ability to create self-organized
one-dimensional optically bound arrays of microscopic particles, where the
light fields adapt to the particle locations and vice versa. We develop a
theoretical model to describe this situation and show good agreement with
recent experimental data (Phys. Rev. Lett. 89, 128301 (2002)) for two and three
particles, if the scattering force is assumed to dominate the axial trapping of
the particles. The extension of these ideas to two and three dimensional
optically bound states is also discussed.Comment: 12 pages, incl. 5 figures, accepted by Phys. Rev.
Transverse Fresnel-Fizeau drag effects in strongly dispersive media
A light beam normally incident upon an uniformly moving dielectric medium is
in general subject to bendings due to a transverse Fresnel-Fizeau light drag
effect. In conventional dielectrics, the magnitude of this bending effect is
very small and hard to detect. Yet, it can be dramatically enhanced in strongly
dispersive media where slow group velocities in the m/s range have been
recently observed taking advantage of the electromagnetically induced
transparency (EIT) effect. In addition to the usual downstream drag that takes
place for positive group velocities, we predict a significant anomalous
upstream drag to occur for small and negative group velocities. Furthermore,
for sufficiently fast speeds of the medium, higher order dispersion terms are
found to play an important role and to be responsible for peculiar effects such
as light propagation along curved paths and the restoration of the spatial
coherence of an incident noisy beam. The physics underlying this new class of
slow-light effects is thoroughly discussed
Cosmic histories of star formation and reionization: An analysis with a power-law approximation
With a simple power-law approximation of high-redshift () star
formation history, i.e., , we
investigate the reionization of intergalactic medium (IGM) and the consequent
Thomson scattering optical depth for cosmic microwave background (CMB) photons.
A constraint on the evolution index is derived from the CMB optical
depth measured by the {\it Wilkinson Microwave Anisotropy Probe} (WMAP)
experiment, which reads ,
where the free parameter is the number of the escaped
ionizing ultraviolet photons per baryon. Moreover, the redshift for full
reionization, , can also be expressed as a function of as well as
. By further taking into account the implication of the
Gunn-Peterson trough observations to quasars for the full reionization
redshift, i.e., , we obtain
and .
For a typical number of of ionizing photons released per baryon of
normal stars, the fraction of these photons escaping from the stars, , can be constrained to within the range of .Comment: 10 pages, 4 figures, accepted for publication in JCA
Background-free detection of trapped ions
We demonstrate a Doppler cooling and detection scheme for ions with low-lying
D levels which almost entirely suppresses scattered laser light background,
while retaining a high fluorescence signal and efficient cooling. We cool a
single ion with a laser on the 2S1/2 to 2P1/2 transition as usual, but repump
via the 2P3/2 level. By filtering out light on the cooling transition and
detecting only the fluorescence from the 2P_3/2 to 2S1/2 decays, we suppress
the scattered laser light background count rate to 1 per second while
maintaining a signal of 29000 per second with moderate saturation of the
cooling transition. This scheme will be particularly useful for experiments
where ions are trapped in close proximity to surfaces, such as the trap
electrodes in microfabricated ion traps, which leads to high background scatter
from the cooling beam
Interface ferromagnetism and orbital reconstruction in BiFeO3- La0.7Sr0.3MnO3 heterostructures
We report the formation of a novel ferromagnetic state in the antiferromagnet
BiFeO3 at the interface with La0.7Sr0.3MnO3. Using x-ray magnetic circular
dichroism at Mn and Fe L2,3-edges, we discovered that the development of this
ferromagnetic spin structure is strongly associated with the onset of a
significant exchange bias. Our results demonstrate that the magnetic state is
directly related with an electronic orbital reconstruction at the interface,
which is supported by the linearly polarized x-ray absorption measurement at
oxygen K-edge.Comment: 17 pages, 4 figures, PRL in pres
Use of viral pathogens and indicators to differentiate between human and non-human fecal contamination in a microbial source tracking comparison study
Assays for the detection and typing of adenoviruses, enteroviruses and F+ specific coliphages were performed on samples created as part of a national microbial source tracking methods comparison study. The samples were created blind to the researchers, and were inoculated with a variety of types of fecal contamination source (human, sewage, dog, seagull and cow) and mixtures of sources. Viral tracer and pathogen assays demonstrated a general ability to discriminate human from non-human fecal contamination. For example, samples inoculated with sewage were correctly identified as containing human fecal contamination because they contained human adenovirus or human enterovirus. In samples containing fecal material from individual humans, human pathogen analysis yielded negative results probably because the stool samples were taken from healthy individuals. False positive rates for the virus-based methods (0-8%) were among the lowest observed during the methods comparison study. It is suggested that virus-based source tracking methods are useful for identification of sewage contamination, and that these methods may also be useful as an indication of the public health risk associated with viral pathogens. Overall, virus-based source tracking methods are an important approach to include in the microbial source tracking 'toolbox'
Symmetry-breaking Effects for Polariton Condensates in Double-Well Potentials
We study the existence, stability, and dynamics of symmetric and anti-symmetric states of quasi-one-dimensional polariton condensates in double-well potentials, in the presence of nonresonant pumping and nonlinear damping. Some prototypical features of the system, such as the bifurcation of asymmetric solutions, are similar to the Hamiltonian analog of the double-well system considered in the realm of atomic condensates. Nevertheless, there are also some nontrivial differences including, e.g., the unstable nature of both the parent and the daughter branch emerging in the relevant pitchfork bifurcation for slightly larger values of atom numbers. Another interesting feature that does not appear in the atomic condensate case is that the bifurcation for attractive interactions is slightly sub-critical instead of supercritical. These conclusions of the bifurcation analysis are corroborated by direct numerical simulations examining the dynamics of the system in the unstable regime.MICINN (Spain) project FIS2008- 0484
Au+Au Reactions at the AGS: Experiments E866 and E917
Particle production and correlation functions from Au+Au reactions have been
measured as a function of both beam energy (2-10.7AGeV) and impact parameter.
These results are used to probe the dynamics of heavy-ion reactions, confront
hadronic models over a wide range of conditions and to search for the onset of
new phenomena.Comment: 12 pages, 14 figures, Talk presented at Quark Matter '9
Cassava processing wastewater as a platform for third generation biodiesel production
ABSTRACT This study aimed to evaluate third generation biodiesel production by microalgae Phormidium autumnale using cassava processing wastewater as a platform. Experiments were performed in a heterotrophic bubble column bioreactor. The study focused on the evaluation of the bioreactor (batch and fed-batch) of different operational modes and the analysis of biofuel quality. Results indicate that fed-batch cultivations improved system performance, elevating biomass and oil productions to 12.0 g L−1 and 1.19 g L−1, respectively. The composition of this oil is predominantly saturated (60 %) and monounsaturated (39 %), resulting in a biodiesel that complys with U.S., European and Brazilian standards. The technological route developed indicates potential for sustainable production of bulk oil and biodiesel, through the minimization of water and chemical demands required to support such a process
- …