337 research outputs found

    Programmable Selfâ Locking Origami Mechanical Metamaterials

    Full text link
    Developing mechanical metamaterials with programmable properties is an emerging topic receiving wide attention. While the programmability mainly originates from structural multistability in previously designed metamaterials, here it is shown that nonflatâ foldable origami provides a new platform to achieve programmability via its intrinsic selfâ locking and reconfiguration capabilities. Working with the singleâ collinear degreeâ 4 vertex origami tessellation, it is found that each unit cell can selfâ lock at a nonflat configuration and, therefore, possesses wide design space to program its foldability and relative density. Experiments and numerical analyses are combined to demonstrate that by switching the deformation modes of the constituent cell from prelocking folding to postlocking pressing, its stiffness experiences a sudden jump, implying a limitingâ stopper effect. Such a stiffness jump is generalized to a multisegment piecewise stiffness profile in a multilayer model. Furthermore, it is revealed that via strategically switching the constituent cells’ deformation modes through passive or active means, the nâ layer metamaterial’s stiffness is controllable among 2n target stiffness values. Additionally, the piecewise stiffness can also trigger bistable responses dynamically under harmonic excitations, highlighting the metamaterial’s rich dynamic performance. These unique characteristics of selfâ locking origami present new paths for creating programmable mechanical metamaterials with in situ controllable mechanical properties.An origami mechanical metamaterial with programmable lockingâ induced piecewise stiffness is demonstrated. The kinematical and mechanical properties of the metamaterial can be strategically tuned by switching the deformation mode of the constituent cells between prelocking folding and postlocking pressing. The capabilities uncovered present new pathways for achieving programmability in metamaterials and metastructures.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143652/1/adma201706311_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143652/2/adma201706311-sup-0001-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143652/3/adma201706311.pd

    Cluster-like Headache Secondary to Cerebral Venous Thrombosis

    Get PDF
    Cluster headache (CH) is considered a primary headache syndrome. However, symptomatic cases that resemble CH have also been reported. A patient with cerebral venous thrombosis presented with ipsilateral frontal pain accompanied by ophthalmoparesis, nasal congestion, and lacrimation. The patient's headache showed a dramatic response to oxygen. He experienced no further cluster-like headaches after treatment with an anticoagulant. This case suggests the possible role of venous stasis of the cavernous sinus in cluster-like headache

    Rapidly Progressive Toxic Leukoencephalomyelopathy with Myelodysplastic Syndrome: a Clinicopathological Correlation

    Get PDF
    Neurological disorders induced by long-term exposure to organic solvents typically have a slowly progressive clinical course, which may be arrested or even reversed following discontinuation of exposure. We report an unusual case of rapidly progressive toxic leukoencephalomyelopathy in a 29-year-old man who had worked at a chemical factory that used toluene for the manufacture of nylon 66 for 5 years. He presented with progressive weakness of legs, recurrent seizures, and cognitive decline. Widespread white-matter changes in the brain and spinal cord, and myelodysplastic syndrome were noted. He died 6 months after the onset of his symptoms, and autopsy showed discrete multifocal demyelination and necrosis in the central nervous system, and dysplastic cells of erythroid, myeloid, and megakaryotic lineages in blood vessels. The co-occurrence of leukoencephalomyelopathy and myelodysplastic syndrome highlights the vulnerability of the white matter and bone marrow to injury from organic solvents. Intravascular congestion of dysplastic hematopoietic cells might have led to his unusually rapid progression of leukoencephalomyelopathy

    Anti-inflammatory and Immune-regulatory Effects of Subcutaneous Perillae Fructus Extract Injections on OVA-induced Asthma in Mice

    Get PDF
    Perillae fructus (perilla seed) is a traditional medicinal herb used to treat bronchial asthma in Oriental medical clinics. ST36 is one of the most widely used acupuncture points, particularly for immune system regulation. Injection of an herbal extract into an acupuncture point (herbal acupuncture) is a therapeutic technique combining both acupuncture and herbal treatment. Perillae fructus extract was injected subcutaneously (Perillae fructus herbal acupuncture; PF-HA) at acupoint ST36 of OVA-induced asthmatic mice. The lung weight, bronchoalveolar fluid (BALF) cell count, the number of CCR3+, CD11b+, CD4+ and CD3e+/CD69+ cells in the lung, and the level of IgE, IL-4, IL-5 and IL-13 in BALF and serum were then measured. RT-PCR was used to measure the mRNA expression of IL-4, IL-5, IL-13 and TNF-α in the lung. Lung sections were analyzed histologically. PF-HA significantly reduced lung weight, the number of inflammatory cells in the lung and BALF, the levels of IgE and Th2 cytokines in BALF and serum, mRNA expression of Th2 cytokines in the lung, and pathological changes in lung tissue. Our results suggest that PF-HA may have an anti-inflammatory and immune-regulatory effect on bronchial allergic asthma by restoring the Th1/Th2 imbalance in the immune system and suppressing eosinophilic inflammation in airways

    Direct Generation of Neurosphere-Like Cells from Human Dermal Fibroblasts

    Get PDF
    Neural stem cell (NSC) transplantation replaces damaged brain cells and provides disease-modifying effects in many neurological disorders. However, there has been no efficient way to obtain autologous NSCs in patients. Given that ectopic factors can reprogram somatic cells to be pluripotent, we attempted to generate human NSC-like cells by reprograming human fibroblasts. Fibroblasts were transfected with NSC line-derived cellular extracts and grown in neurosphere culture conditions. The cells were then analyzed for NSC characteristics, including neurosphere formation, gene expression patterns, and ability to differentiate. The obtained induced neurosphere-like cells (iNS), which formed daughter neurospheres after serial passaging, expressed neural stem cell markers, and had demethylated SOX2 regulatory regions, all characteristics of human NSCs. The iNS had gene expression patterns that were a combination of the patterns of NSCs and fibroblasts, but they could be differentiated to express neuroglial markers and neuronal sodium channels. These results show for the first time that iNS can be directly generated from human fibroblasts. Further studies on their application in neurological diseases are warranted

    Early intravenous infusion of sodium nitrite protects brain against in vivo ischemia-reperfusion injury

    Get PDF
    BACKGROUND AND PURPOSE: The rate of nitric oxide (NO) generation from nitrite is linearly dependent on reductions in oxygen and pH levels. Recently, nitrite-derived NO has been reported to exert a profound protection against liver and heart ischemia-reperfusion injury. In this study, we hypothesized that nitrite would be reduced to NO in the ischemic brain and exert NO-dependent neuroprotective effects. METHODS: Cerebral ischemia-reperfusion injury was induced by intraluminal thread occlusion of middle cerebral artery in the adult male rats. Solutions of sodium nitrite were infused intravenously at the time of reperfusion. Sodium nitrate and carboxy-PTIO (30 minutes before ischemic surgery), a direct NO scavenger, were infused for comparisons. RESULTS: Nitrite reduced infarction volume and enhanced local cerebral blood flow and functional recovery. The effects were observed at concentrations of 48 nmol and 480 nmol, but not at 4800 nmol nitrite and 480 nmol nitrate. The neuroprotective effects of nitrite were inhibited completely by the carboxy-PTIO. The 480 nmol nitrite attenuated dihydroethidium activity, 3-nitrotyrosine formation, and lipid peroxidation in the ischemic brain. CONCLUSIONS: Nitrite exerted profound neuroprotective effects with antioxidant properties in the ischemic brains. These results suggest that nitrite, as a biological storage reserve of NO, may be a novel therapeutic agent in the setting of acute stroke.This study was supported by a Korean Research Foundation grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund, KRF-2005-015-E00182)
    corecore