161 research outputs found

    One step electrodeposition of Ag-decorated ZnO nanowires

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10008-016-3476-0.A new route for synthesizing Ag-decorated ZnO nanowires (NWs) on conductive glass substrates using a one-step electrodeposition technique is described here. The structural, optical, and photoelectrochemical properties of Ag-decorated ZnO nanowires were studied in detail using techniques such X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, UV-visible spectroscopy, photoluminescence, and photoelectrochemical measurements. Both pure and Ag-decorated ZnO nanowires were found to crystallize in the wurtzite structure, irrespective of their Ag contents. Increasing the Ag content from pure ZnO NWs to 3% Ag ZnO NWs decreases the photoluminescence intensity, shifts the optical band gap to the red, and increases the photocurrent up to threefold. This behavior was attributed to the surface plasmon resonance effect induced by the Ag nanoparticles, which inhibits charge recombination and improves charge transport on the ZnO surface.B.S. acknowledges the Nanomaterials and Systems Laboratory for Renewable Energies, Research and Technology Centre of Energy Technoparc Borj Cedria for financial support. This work was supported by the Ministerio de Economia y Competitividad (ENE2013-46624-C4-4-R) and the Generalitat Valenciana (Prometeus 2014/044).Slimi, B.; Ben Assaker, I.; Kriaa, A.; Marí, B.; Chtourou, R. (2017). One step electrodeposition of Ag-decorated ZnO nanowires. Journal of Solid State Electrochemistry. 21(5):1253-1261. https://doi.org/10.1007/s10008-016-3476-0S12531261215Morrison SR, Freund T (1967) J Chem Phys 47:1543–1551Studenikin SA, Golego N, Cocivera M (1998) J Appl Phys 83:2104–2111Look DC, Reynolds DC, Hemsky JW, Jones RL, Sizelove JR (1999) J Appl Phys Lett 75:811–813Ng HT, Han J, Yamada T, Nguyen P, Chen YP, Meyyappan M (2004) Nano Lett 4:1247–1252Chang PC, Fan ZY, Chien CJ, Stichtenoth D, Ronning C, Lu JG (2006) Appl Phys Lett 89:133113–133116Wang X, Song J, Liu J, Wang ZL (2007) Science 316:102–105Janotti A, Van de Walle CG (2009) Rep Prog Phys 72:126501–126530Thomas MA, Sun WW, Cui JB (2012) J Phys Chem C 116:6383–6391Yin X, Que W, Fei D, Shen F, Guo Q (2012) J Alloys Compd 524:13–21Tan ST, AlZayed NS, Lakshminarayana G, Naumar F, Umar AA, Oyama M, Myronchuk G, Kityk IV (2014) Phys E 61:23–27Wen LB, Huang YW, Li SB (1987) J Appl Phys 62:2295–2297Gurav KV, Fulari VJ, Patil UM, Lokhande CD, Joo OS (2010) Appl Surf Sci 256:2680–2685Kong XY, Wang ZL (2003) Nano Lett 3:1625–1631Kim K, Song YW, Chang S, Kim IH, Kim S, Lee SY (2009) Thin Solid Films 518:1190–1193Guo Z, Zhao D, Liu Y, Shen D, Zhang J, Li B (2008) Appl Phys Lett 93:163501–163504Hatch SM, Briscoe J, Dunn S (2013) Adv Mater 25:867–871Tarwal NL, Patil PS (2011) Electrochim Acta 56:6510–6516Fu M, Li S, Yao J, Wu H, He D, Wang Y (2013) J Porous Mater 20:1485–1489Haldar KK, Sen T, Patra A (2008) J Phys Chem C 112:11650–116506Xie J, Wu Q (2010) Mater Lett 64:389–392Yuan J, Choo ESG, Tang X, Sheng Y, Ding J, Xue J (2010) Nanotechnology 21:185606–185616Sahu DR, Liu CP, Wang RC, Kuo CL, Huang JL (2012) J Appl Ceram Technol 25:1–25Subramanian V, Wolf EE, Kamat PV (2003) J Phys Chem B 107:7479–7485Zhang D, Chava S, Berven C, Lee SK, Devitt R, Katkanant V (2010) Appl Phys A 100:145–150Zhu G, Yang R, Wang S, Wang ZL (2010) Nano Lett 10:3151–3155Mute A, Peres M, Peiris TC, Lourenço AC, Jensen LR, Monteiro T (2010) J Nanosci Nanotechnol 10:2669–2673Wang K, Chen J, Zhou W, Zhang Y, Yan Y, Pern J, Mascarenhas A (2008) Adv Mater 20:3248Pauporté T, Bataille G, Joulaud L, Vermersch FJ (2010) J Phys Chem C 114:194–202Wang T, Jiao Z, Chen T, Li Y, Ren W, Lin S, Lu G, Ye J, Bi Y (2013) Nanoscale 5:7552–7557Brayek A, Ghoul M, Souissi A, Ben Assaker I, Lecoq H, Nowak S, Chaguetmi S, Ammar S, Oueslati M, Chtourou R (2014) Mater Lett 129:142–145Paunovic M, Schlesinger M (2006) Fundamentals of electrochemical deposition. Wiley, New YorkPauporte T, Lupan O, Zhang J, Tugsuz T, Ciofini I, Labat F, Viana B (2015) ACS Appl Mater Interfaces 7:11871–11880Lupan O, Cretu V, Postica V, Ahmadi M, Cuenya RB, Chow L, Tiginyanu I, Viana B, Pauporté T, Adelung R (2016) Sensors Actuators B 223:893–903Ghoul M, Braiek B, Brayek A, Ben Assaker I, Khalifa N, Ben Naceur J, Souissi A, Lamouchi A, Ammar S, Chtourou R (2015) J Alloys Compd 647:660–664Messaoudi O, Makhlouf H, Souissi A, Ben Assaker I, Amiri G, Bardaoui A, Oueslati M, Bechelany M, Chtourou R (2015) Appl Surf Sci 343:148–152Song J, Lim S (2007) J Phys Chem C 111:596–600Wang H, Baek S, Song J, Lee J, Lim S (2008) Nanotechnology 19:075607–075613Hsu MH, Chang CJ (2014) J Hazard Mater 278:444–453Ibănescu M, Muşat V, Textor T, Badilita V, Mahltig B (2014) J Alloys Compd 610:244–249Joshi MK, Pant HR, Kim HJ, Kim JH, Kim CS (2014) Colloids Surf A 446:102–108Zhu H, Yang D, Zhang H (2006) Mater Lett 60:2686–2689Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison Wesley, Reading, pp 162–165Chai B, Wang X, Cheng S, Zhou H, Zhang F (2014) Ceram Int 40:429–435Su L, Qin N (2015) Ceram Int 41:2673–2679Shanmuganathan G, Shameem IB, Krishnan S, Ranganathan B (2013) J Alloys Compd 562:187–193Tauc T, Grigorvici R, Vancu A (1996) Physical Status Solidi B 15:627–637Zhang XL, Zhao JL, Wang SG, Dai HT, Sun XW (2013) Proc SPIE 8641:86411NZhou XD, Xiao XH, Xu JX, Cai GX, Ren F, Jiang CZ (2011) Europhys Lett 93:57009–57015Zhu J, Wang Y, Huang L (2005) Mater Chem Phys 93:383–387Chalana SR, Ganesan V, Pillai VPM (2015) Appl Phys Adv 5:107207–107224Udom I, Zhang Y, Ram MK, Stefanakos EK, Hepp AF, Elzein R, Schlaf R, Goswami DY (2014) Thin Solid Films 564:258–263Nour ES, Echresh A, Liu X, Broitman E, Willander M, Nur O (2015) Appl Phys Adv 5:077163–077173Sun T, Qiu J, Liang C (2008) J Phys Chem C 112:715–721Liu HR, Shao GX, Zhao JF, Zhang ZX, Zhang Y, Liang J, Liu XG, Jia HS, Xu BS (2012) J Phys Chem 116:16182–16190Manjón FJ, Mollar M, Hernández-Fenollosa MA, Marí B, Lauck R, Cardona M (2003) Solid State Commun 128:35–39Lu J, Xu C, Dai J, Li J, Wang Y, Lin Y, Li P (2015) Nanoscale 7:3396–3403Karyaoui M, Mhamdi A, Kaouach H, Labidi A, Boukhachem A, Boubaker K, Amlouk M, Chtourou R (2015) Mater Sci Semicond Process 30:255–26

    Chinas Going Global – Finanzmarktkrise bietet Chancen für chinesische Investoren im Ausland

    Get PDF
    We study the effect of nitrogen on the GaAs0.9-xNxSb0.1 (x = 0.00, 0.65%, 1.06%, 1.45%, and 1.90%) alloy dielectric function by spectroscopic ellipsometry in the energy range from 0.73 to 4.75 eV. The compositional dependences of the critical points energies for the GaAs0.9-xNxSb0.1 are obtained. In addition to the GaAs intrinsic transitions E-1, E-1+ Delta(1), and E-0, the nitrogen-induced Gamma-point optical transitions E-0 and E+, together with a third transition E-#, are identified. We find that with increasing the N content, the E-0 transition shifts to lower energies while the E+ and (E)# transitions shift to higher energies. We suggest that the origin of the E-0, E+, and E-# transitions may be explained by the double band anticrossing (BAC) model, consisting of a conduction BAC model and a valence BAC model.Original Publication:N. Ben Sedrine, C. Bouhafs, J.C. Harmand, R. Chtourou and Vanya Darakchieva, Effect of nitrogen on the GaAs0.9-xNxSb0.1 dielectric function from the near-infrared to the ultraviolet, 2010, Applied Physics Letters, (97), 20, 201903.http://dx.doi.org/10.1063/1.3518479Copyright: American Institute of Physicshttp://www.aip.org

    Sleep and psychological factors are associated with meeting discharge criteria to return to sport following ACL reconstruction in athletes

    Get PDF
    INTRODUCTION: This study aimed to determine if sleep quality and psychological factors were associated with time to meet the discharge criteria to return to sport (RTS) following anterior cruciate ligament reconstruction (ACL-R) among athletes experiencing better quality of sleep and psychological responses returning faster to full activity. METHOD: A cohort-study design included 89 athletes following ACL-R. Each participant completed a battery of questionnaires at 6 different time points: within 3 days of injury occurrence and at post-surgery (1.5m, 3m, 4.5m, 6m and when discharge criteria were met). Assessment included sleep quality and quantity, symptoms of depression, anxiety, stress, psychological readiness to RTS and fear of re-injury. The primary outcome was the time needed to meet all discharge criteria to RTS. RESULTS: Sleep parameters and psychological factors were not associated with time to meet the discharge criteria to RTS. However, athletes that had low anxiety and insomnia scores at baseline and better sleep quality at 3m, 4.5m, 6m and at discharge were more adherent to the rehabilitation program and more likely to meet the RTS discharge criteria OR 1.2 (95% CI 1.0-1.34), 1.3 (95% CI 1.1, 1.7) and 2.0 (95% CI 1.1-3.4) respectively. CONCLUSIONS: Sleep quality and psychological factors were not associated with time to meet the discharge criteria to RTS but impacted whether athletes adhered and completed their rehabilitation program or not. Monitoring sleep quality and psychological factors of athletes before and following ACL-R surgery is important to identify athletes who could have difficulties in adhering to and completing their rehabilitation program to RTS

    A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa

    Get PDF
    [Figure: see text]

    A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa.

    Get PDF
    The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    • …
    corecore