23 research outputs found

    Illiberalism and the Deinstitutionalization of Public Diplomacy: The Rise of Hungary and Viktor Orbán in American Conservative Media

    Get PDF
    The promotion of Hungary and Viktor Orbán among American conservatives is often presented as a warning of conservative embrace of illiberal politics. While acknowledging the draw of Hungary’s illiberal policies as the motivating factor for American conservative interest in Hungary, our focus seeks to answer to what extent this embrace of Hungary can be considered a form of public diplomacy. We examined the frequency and substance of mentions of Hungary and Viktor Orbán in 1643 articles within 13 American conservative media outlets to track how the narrative around the country and the prime minister has evolved over the past four years, bearing in mind the impact of Tucker Carlson’s interview with Viktor Orbán in late 2021. We found both an increase in the quantity of articles focused on Hungary and Viktor Orbán as well as a largely positive trend defending and praising the policies of Hungary and the prime minister. We also observed a strong focus on Orbán as the primary actor of Hungarian public diplomacy and argue that this hyper-presidentialized focus exemplifies the deinstitutionalization of public diplomacy, along with other elements that contribute to the enhancement of Orbán as an individual public diplomacy actor

    Incremental Medians via Online Bidding

    Full text link
    In the k-median problem we are given sets of facilities and customers, and distances between them. For a given set F of facilities, the cost of serving a customer u is the minimum distance between u and a facility in F. The goal is to find a set F of k facilities that minimizes the sum, over all customers, of their service costs. Following Mettu and Plaxton, we study the incremental medians problem, where k is not known in advance, and the algorithm produces a nested sequence of facility sets where the kth set has size k. The algorithm is c-cost-competitive if the cost of each set is at most c times the cost of the optimum set of size k. We give improved incremental algorithms for the metric version: an 8-cost-competitive deterministic algorithm, a 2e ~ 5.44-cost-competitive randomized algorithm, a (24+epsilon)-cost-competitive, poly-time deterministic algorithm, and a (6e+epsilon ~ .31)-cost-competitive, poly-time randomized algorithm. The algorithm is s-size-competitive if the cost of the kth set is at most the minimum cost of any set of size k, and has size at most s k. The optimal size-competitive ratios for this problem are 4 (deterministic) and e (randomized). We present the first poly-time O(log m)-size-approximation algorithm for the offline problem and first poly-time O(log m)-size-competitive algorithm for the incremental problem. Our proofs reduce incremental medians to the following online bidding problem: faced with an unknown threshold T, an algorithm submits "bids" until it submits a bid that is at least the threshold. It pays the sum of all its bids. We prove that folklore algorithms for online bidding are optimally competitive.Comment: conference version appeared in LATIN 2006 as "Oblivious Medians via Online Bidding

    Pharmacological and Physiological Characterization of the Tremulous Jaw Movement Model of Parkinsonian Tremor: Potential Insights into the Pathophysiology of Tremor

    Get PDF
    Tremor is a cardinal symptom of parkinsonism, occurring early on in the disease course and affecting more than 70% of patients. Parkinsonian resting tremor occurs in a frequency range of 3–7 Hz and can be resistant to available pharmacotherapy. Despite its prevalence, and the significant decrease in quality of life associated with it, the pathophysiology of parkinsonian tremor is poorly understood. The tremulous jaw movement (TJM) model is an extensively validated rodent model of tremor. TJMs are induced by conditions that also lead to parkinsonism in humans (i.e., striatal DA depletion, DA antagonism, and cholinomimetic activity) and reversed by several antiparkinsonian drugs (i.e., DA precursors, DA agonists, anticholinergics, and adenosine A2A antagonists). TJMs occur in the same 3–7 Hz frequency range seen in parkinsonian resting tremor, a range distinct from that of dyskinesia (1–2 Hz), and postural tremor (8–14 Hz). Overall, these drug-induced TJMs share many characteristics with human parkinsonian tremor, but do not closely resemble tardive dyskinesia. The current review discusses recent advances in the validation of the TJM model, and illustrates how this model is being used to develop novel therapeutic strategies, both surgical and pharmacological, for the treatment of parkinsonian resting tremor

    Nucleus Accumbens Adenosine A2A Receptors Regulate Exertion of Effort by Acting on the Ventral Striatopallidal Pathway

    Get PDF
    Goal-directed actions are sensitive to work-related response costs, and dopamine in nucleus accumbens is thought to modulate the exertion of effort in motivated behavior. Dopamine-rich striatal areas such as nucleus accumbens also contain high numbers of adenosine A2A receptors, and, for that reason, the behavioral and neurochemical effects of the adenosine A2A receptor agonist CGS 21680 [2-p-(2-carboxyethyl) phenethylamino-5′-N-ethylcarboxamidoadenosine] were investigated. Stimulation of accumbens adenosine A2A receptors disrupted performance of an instrumental task with high work demands (i.e., an interval lever-pressing schedule with a ratio requirement attached) but had little effect on a task with a lower work requirement. Immunohistochemical studies revealed that accumbens neurons that project to the ventral pallidum showed adenosine A2A receptors immunoreactivity. Moreover, activation of accumbens A2A receptors by local injections of CGS 21680 increased extracellular GABA levels in the ventral pallidum. Combined contralateral injections of CGS 21680 into the accumbens and the GABAA agonist muscimol into ventral pallidum (i.e., “disconnection” methods) also impaired response output, indicating that these structures are part of a common neural circuitry regulating the exertion of effort. Thus, accumbens adenosine A2A receptors appear to regulate behavioral activation and effort-related processes by modulating the activity of the ventral striatopallidal pathway. Research on the effort-related functions of these forebrain systems may lead to a greater understanding of pathological features of motivation, such as psychomotor slowing, anergia, and fatigue in depression

    Membrane Properties and the Balance between Excitation and Inhibition Control Gamma-Frequency Oscillations Arising from Feedback Inhibition

    Get PDF
    Computational studies as well as in vivo and in vitro results have shown that many cortical neurons fire in a highly irregular manner and at low average firing rates. These patterns seem to persist even when highly rhythmic signals are recorded by local field potential electrodes or other methods that quantify the summed behavior of a local population. Models of the 30–80 Hz gamma rhythm in which network oscillations arise through ‘stochastic synchrony’ capture the variability observed in the spike output of single cells while preserving network-level organization. We extend upon these results by constructing model networks constrained by experimental measurements and using them to probe the effect of biophysical parameters on network-level activity. We find in simulations that gamma-frequency oscillations are enabled by a high level of incoherent synaptic conductance input, similar to the barrage of noisy synaptic input that cortical neurons have been shown to receive in vivo. This incoherent synaptic input increases the emergent network frequency by shortening the time scale of the membrane in excitatory neurons and by reducing the temporal separation between excitation and inhibition due to decreased spike latency in inhibitory neurons. These mechanisms are demonstrated in simulations and in vitro current-clamp and dynamic-clamp experiments. Simulation results further indicate that the membrane potential noise amplitude has a large impact on network frequency and that the balance between excitatory and inhibitory currents controls network stability and sensitivity to external inputs

    Illiberalism and the Deinstitutionalization of Public Diplomacy: The Rise of Hungary and Viktor Orbán in American Conservative Media

    No full text
    The promotion of Hungary and Viktor Orbán among American conservatives is often presented as a warning of conservative embrace of illiberal politics. While acknowledging the draw of Hungary’s illiberal policies as the motivating factor for American conservative interest in Hungary, our focus seeks to answer to what extent this embrace of Hungary can be considered a form of public diplomacy. We examined the frequency and substance of mentions of Hungary and Viktor Orbán in 1643 articles within 13 American conservative media outlets to track how the narrative around the country and the prime minister has evolved over the past four years, bearing in mind the impact of Tucker Carlson’s interview with Viktor Orbán in late 2021. We found both an increase in the quantity of articles focused on Hungary and Viktor Orbán as well as a largely positive trend defending and praising the policies of Hungary and the prime minister. We also observed a strong focus on Orbán as the primary actor of Hungarian public diplomacy and argue that this hyper-presidentialized focus exemplifies the deinstitutionalization of public diplomacy, along with other elements that contribute to the enhancement of Orbán as an individual public diplomacy actor

    The Buffer Minimization Problem for Multiprocessor Scheduling with Conflicts

    No full text
    We consider the problem of scheduling a sequence of tasks in a multi-processor system with conflicts. The term "conflict" refers to a situation where two or more processors share common resources that can only be accessed by one processor at any given time. Conflicting processors cannot process tasks at the same time. At certain times new tasks arrive in the system, where each task specifies the amount of work (processing time) added to each processor's workload. Each processor stores this workload in its input buffer. Our objective is to schedule task execution, obeying the conflict constraints, and minimizing the maximum buffer size of all processors. In the off-line case, we prove that, unless P = NP, the problem does not have a polynomial-time algorithm with a polynomial approximation ratio. In the on-line case, we provide the following results: (i) a competitive algorithm for general graphs, (ii) tight bounds on the competitive ratios for cliques and complete k-partite ..
    corecore