354 research outputs found

    The K-Server Dual and Loose Competitiveness for Paging

    Full text link
    This paper has two results. The first is based on the surprising observation that the well-known ``least-recently-used'' paging algorithm and the ``balance'' algorithm for weighted caching are linear-programming primal-dual algorithms. This observation leads to a strategy (called ``Greedy-Dual'') that generalizes them both and has an optimal performance guarantee for weighted caching. For the second result, the paper presents empirical studies of paging algorithms, documenting that in practice, on ``typical'' cache sizes and sequences, the performance of paging strategies are much better than their worst-case analyses in the standard model suggest. The paper then presents theoretical results that support and explain this. For example: on any input sequence, with almost all cache sizes, either the performance guarantee of least-recently-used is O(log k) or the fault rate (in an absolute sense) is insignificant. Both of these results are strengthened and generalized in``On-line File Caching'' (1998).Comment: conference version: "On-Line Caching as Cache Size Varies", SODA (1991

    Straight-line Drawability of a Planar Graph Plus an Edge

    Full text link
    We investigate straight-line drawings of topological graphs that consist of a planar graph plus one edge, also called almost-planar graphs. We present a characterization of such graphs that admit a straight-line drawing. The characterization enables a linear-time testing algorithm to determine whether an almost-planar graph admits a straight-line drawing, and a linear-time drawing algorithm that constructs such a drawing, if it exists. We also show that some almost-planar graphs require exponential area for a straight-line drawing

    Illiberalism and the Deinstitutionalization of Public Diplomacy: The Rise of Hungary and Viktor Orbán in American Conservative Media

    Get PDF
    The promotion of Hungary and Viktor Orbán among American conservatives is often presented as a warning of conservative embrace of illiberal politics. While acknowledging the draw of Hungary’s illiberal policies as the motivating factor for American conservative interest in Hungary, our focus seeks to answer to what extent this embrace of Hungary can be considered a form of public diplomacy. We examined the frequency and substance of mentions of Hungary and Viktor Orbán in 1643 articles within 13 American conservative media outlets to track how the narrative around the country and the prime minister has evolved over the past four years, bearing in mind the impact of Tucker Carlson’s interview with Viktor Orbán in late 2021. We found both an increase in the quantity of articles focused on Hungary and Viktor Orbán as well as a largely positive trend defending and praising the policies of Hungary and the prime minister. We also observed a strong focus on Orbán as the primary actor of Hungarian public diplomacy and argue that this hyper-presidentialized focus exemplifies the deinstitutionalization of public diplomacy, along with other elements that contribute to the enhancement of Orbán as an individual public diplomacy actor

    On Packet Scheduling with Adversarial Jamming and Speedup

    Full text link
    In Packet Scheduling with Adversarial Jamming packets of arbitrary sizes arrive over time to be transmitted over a channel in which instantaneous jamming errors occur at times chosen by the adversary and not known to the algorithm. The transmission taking place at the time of jamming is corrupt, and the algorithm learns this fact immediately. An online algorithm maximizes the total size of packets it successfully transmits and the goal is to develop an algorithm with the lowest possible asymptotic competitive ratio, where the additive constant may depend on packet sizes. Our main contribution is a universal algorithm that works for any speedup and packet sizes and, unlike previous algorithms for the problem, it does not need to know these properties in advance. We show that this algorithm guarantees 1-competitiveness with speedup 4, making it the first known algorithm to maintain 1-competitiveness with a moderate speedup in the general setting of arbitrary packet sizes. We also prove a lower bound of ϕ+12.618\phi+1\approx 2.618 on the speedup of any 1-competitive deterministic algorithm, showing that our algorithm is close to the optimum. Additionally, we formulate a general framework for analyzing our algorithm locally and use it to show upper bounds on its competitive ratio for speedups in [1,4)[1,4) and for several special cases, recovering some previously known results, each of which had a dedicated proof. In particular, our algorithm is 3-competitive without speedup, matching both the (worst-case) performance of the algorithm by Jurdzinski et al. and the lower bound by Anta et al.Comment: Appeared in Proc. of the 15th Workshop on Approximation and Online Algorithms (WAOA 2017

    Incremental Medians via Online Bidding

    Full text link
    In the k-median problem we are given sets of facilities and customers, and distances between them. For a given set F of facilities, the cost of serving a customer u is the minimum distance between u and a facility in F. The goal is to find a set F of k facilities that minimizes the sum, over all customers, of their service costs. Following Mettu and Plaxton, we study the incremental medians problem, where k is not known in advance, and the algorithm produces a nested sequence of facility sets where the kth set has size k. The algorithm is c-cost-competitive if the cost of each set is at most c times the cost of the optimum set of size k. We give improved incremental algorithms for the metric version: an 8-cost-competitive deterministic algorithm, a 2e ~ 5.44-cost-competitive randomized algorithm, a (24+epsilon)-cost-competitive, poly-time deterministic algorithm, and a (6e+epsilon ~ .31)-cost-competitive, poly-time randomized algorithm. The algorithm is s-size-competitive if the cost of the kth set is at most the minimum cost of any set of size k, and has size at most s k. The optimal size-competitive ratios for this problem are 4 (deterministic) and e (randomized). We present the first poly-time O(log m)-size-approximation algorithm for the offline problem and first poly-time O(log m)-size-competitive algorithm for the incremental problem. Our proofs reduce incremental medians to the following online bidding problem: faced with an unknown threshold T, an algorithm submits "bids" until it submits a bid that is at least the threshold. It pays the sum of all its bids. We prove that folklore algorithms for online bidding are optimally competitive.Comment: conference version appeared in LATIN 2006 as "Oblivious Medians via Online Bidding

    Parameterizing by the Number of Numbers

    Full text link
    The usefulness of parameterized algorithmics has often depended on what Niedermeier has called, "the art of problem parameterization". In this paper we introduce and explore a novel but general form of parameterization: the number of numbers. Several classic numerical problems, such as Subset Sum, Partition, 3-Partition, Numerical 3-Dimensional Matching, and Numerical Matching with Target Sums, have multisets of integers as input. We initiate the study of parameterizing these problems by the number of distinct integers in the input. We rely on an FPT result for ILPF to show that all the above-mentioned problems are fixed-parameter tractable when parameterized in this way. In various applied settings, problem inputs often consist in part of multisets of integers or multisets of weighted objects (such as edges in a graph, or jobs to be scheduled). Such number-of-numbers parameterized problems often reduce to subproblems about transition systems of various kinds, parameterized by the size of the system description. We consider several core problems of this kind relevant to number-of-numbers parameterization. Our main hardness result considers the problem: given a non-deterministic Mealy machine M (a finite state automaton outputting a letter on each transition), an input word x, and a census requirement c for the output word specifying how many times each letter of the output alphabet should be written, decide whether there exists a computation of M reading x that outputs a word y that meets the requirement c. We show that this problem is hard for W[1]. If the question is whether there exists an input word x such that a computation of M on x outputs a word that meets c, the problem becomes fixed-parameter tractable

    Compact Drawings of 1-Planar Graphs with Right-Angle Crossings and Few Bends

    Full text link
    We study the following classes of beyond-planar graphs: 1-planar, IC-planar, and NIC-planar graphs. These are the graphs that admit a 1-planar, IC-planar, and NIC-planar drawing, respectively. A drawing of a graph is 1-planar if every edge is crossed at most once. A 1-planar drawing is IC-planar if no two pairs of crossing edges share a vertex. A 1-planar drawing is NIC-planar if no two pairs of crossing edges share two vertices. We study the relations of these beyond-planar graph classes (beyond-planar graphs is a collective term for the primary attempts to generalize the planar graphs) to right-angle crossing (RAC) graphs that admit compact drawings on the grid with few bends. We present four drawing algorithms that preserve the given embeddings. First, we show that every nn-vertex NIC-planar graph admits a NIC-planar RAC drawing with at most one bend per edge on a grid of size O(n)×O(n)O(n) \times O(n). Then, we show that every nn-vertex 1-planar graph admits a 1-planar RAC drawing with at most two bends per edge on a grid of size O(n3)×O(n3)O(n^3) \times O(n^3). Finally, we make two known algorithms embedding-preserving; for drawing 1-planar RAC graphs with at most one bend per edge and for drawing IC-planar RAC graphs straight-line

    Differential behavioral state-dependence in the burst properties of CA3 and CA1 neurons

    Get PDF
    Brief bursts of fast high-frequency action potentials are a signature characteristic of CA3 and CA1 pyramidal neurons. Understanding the factors determining burst and single spiking is potentially significant for sensory representation, synaptic plasticity and epileptogenesis. A variety of models suggest distinct functional roles for burst discharge, and for specific characteristics of the burst in neural coding. However, little in vivo data demonstrate how often and under what conditions CA3 and CA1 actually exhibit burst and single spike discharges. The present study examined burst discharge and single spiking of CA3 and CA1 neurons across distinct behavioral states (awake-immobility and maze-running) in rats. In both CA3 and CA1 spike bursts accounted for less than 20% of all spike events. CA3 neurons exhibited more spikes per burst, greater spike frequency, larger amplitude spikes and more spike amplitude attenuation than CA1 neurons. A major finding of the present study is that the propensity of CA1 neurons to burst was affected by behavioral state, while the propensity of CA3 to burst was not. CA1 neurons exhibited fewer bursts during maze running compared with awake-immobility. In contrast, there were no differences in burst discharge of CA3 neurons. Neurons in both subregions exhibited smaller spike amplitude, fewer spikes per burst, longer inter-spike intervals and greater spike amplitude attenuation within a burst during awake-immobility compared with maze running. These findings demonstrate that the CA1 network is under greater behavioral state-dependent regulation than CA3. The present findings should inform both theoretic and computational models of CA3 and CA1 function. © 2006 IBRO

    Fast Two-Robot Disk Evacuation with Wireless Communication

    Get PDF
    In the fast evacuation problem, we study the path planning problem for two robots who want to minimize the worst-case evacuation time on the unit disk. The robots are initially placed at the center of the disk. In order to evacuate, they need to reach an unknown point, the exit, on the boundary of the disk. Once one of the robots finds the exit, it will instantaneously notify the other agent, who will make a beeline to it. The problem has been studied for robots with the same speed~\cite{s1}. We study a more general case where one robot has speed 11 and the other has speed s1s \geq 1. We provide optimal evacuation strategies in the case that sc2.752.75s \geq c_{2.75} \approx 2.75 by showing matching upper and lower bounds on the worst-case evacuation time. For 1s<c2.751\leq s < c_{2.75}, we show (non-matching) upper and lower bounds on the evacuation time with a ratio less than 1.221.22. Moreover, we demonstrate that a generalization of the two-robot search strategy from~\cite{s1} is outperformed by our proposed strategies for any sc1.711.71s \geq c_{1.71} \approx 1.71.Comment: 18 pages, 10 figure

    Recognizing and Drawing IC-planar Graphs

    Full text link
    IC-planar graphs are those graphs that admit a drawing where no two crossed edges share an end-vertex and each edge is crossed at most once. They are a proper subfamily of the 1-planar graphs. Given an embedded IC-planar graph GG with nn vertices, we present an O(n)O(n)-time algorithm that computes a straight-line drawing of GG in quadratic area, and an O(n3)O(n^3)-time algorithm that computes a straight-line drawing of GG with right-angle crossings in exponential area. Both these area requirements are worst-case optimal. We also show that it is NP-complete to test IC-planarity both in the general case and in the case in which a rotation system is fixed for the input graph. Furthermore, we describe a polynomial-time algorithm to test whether a set of matching edges can be added to a triangulated planar graph such that the resulting graph is IC-planar
    corecore