46 research outputs found
Drug transport in brain via the cerebrospinal fluid
The human brain has no lymphatic system, but produces over a half-liter each day of cerebrospinal fluid. The cerebrospinal fluid is secreted at the choroid plexus and occupies the cavities of the four ventricles, as well as the cranial and spinal sub-arachnoid space. The cerebrospinal fluid moves over the surfaces of the brain and spinal cord and is rapidly absorbed into the general circulation. The choroid plexus forms the blood-cerebrospinal fluid barrier, and this barrier is functionally distinct from the brain microvascular endothelium, which forms the blood-brain barrier. Virtually all non-cellular substances in blood distribute into cerebrospinal fluid, and drug entry into cerebrospinal fluid is not an index of drug transport across the blood-brain barrier. Drug injected into the cerebrospinal fluid rapidly moves into the blood via bulk flow, but penetrates into brain tissue poorly owing to the limitations of diffusion. Drug transport into cerebrospinal fluid vs. brain interstitial fluid requires knowledge of the relative expression of transporters at the choroid plexus versus the brain microvascular endothelium
Quantifying bioirrigation using ecological parameters: a stochastic approach†
Irrigation by benthic macrofauna has a major influence on the biogeochemistry and microbial community structure of sediments. Existing quantitative models of bioirrigation rely primarily on chemical, rather than ecological, information and the depth-dependence of bioirrigation intensity is either imposed or constrained through a data fitting procedure. In this study, stochastic simulations of 3D burrow networks are used to calculate mean densities, volumes and wall surface areas of burrows, as well as their variabilities, as a function of sediment depth. Burrow networks of the following model organisms are considered: the polychaete worms Nereis diversicolor and Schizocardium sp., the shrimp Callianassa subterranea, the echiuran worm Maxmuelleria lankesteri, the fiddler crabs Uca minax, U. pugnax and U. pugilator, and the mud crabs Sesarma reticulatum and Eurytium limosum. Consortia of these model organisms are then used to predict burrow networks in a shallow water carbonate sediment at Dry Tortugas, FL, and in two intertidal saltmarsh sites at Sapelo Island, GA. Solute-specific nonlocal bioirrigation coefficients are calculated from the depth-dependent burrow surface areas and the radial diffusive length scale around the burrows. Bioirrigation coefficients for sulfate obtained from network simulations, with the diffusive length scales constrained by sulfate reduction rate profiles, agree with independent estimates of bioirrigation coefficients based on pore water chemistry. Bioirrigation coefficients for O(2 )derived from the stochastic model, with the diffusion length scales constrained by O(2 )microprofiles measured at the sediment/water interface, are larger than irrigation coefficients based on vertical pore water chemical profiles. This reflects, in part, the rapid attenuation with depth of the O(2 )concentration within the burrows, which reduces the driving force for chemical transfer across the burrow walls. Correction for the depletion of O(2 )in the burrows results in closer agreement between stochastically-derived and chemically-derived irrigation coefficient profiles
Prolactinomas, Cushing's disease and acromegaly: debating the role of medical therapy for secretory pituitary adenomas
Pituitary adenomas are associated with a variety of clinical manifestations resulting from excessive hormone secretion and tumor mass effects, and require a multidisciplinary management approach. This article discusses the treatment modalities for the management of patients with a prolactinoma, Cushing's disease and acromegaly, and summarizes the options for medical therapy in these patients
Climate simulations for 1880-2003 with GISS modelE
We carry out climate simulations for 1880-2003 with GISS modelE driven by ten
measured or estimated climate forcings. An ensemble of climate model runs is
carried out for each forcing acting individually and for all forcing mechanisms
acting together. We compare side-by-side simulated climate change for each
forcing, all forcings, observations, unforced variability among model ensemble
members, and, if available, observed variability. Discrepancies between
observations and simulations with all forcings are due to model deficiencies,
inaccurate or incomplete forcings, and imperfect observations. Although there
are notable discrepancies between model and observations, the fidelity is
sufficient to encourage use of the model for simulations of future climate
change. By using a fixed well-documented model and accurately defining the
1880-2003 forcings, we aim to provide a benchmark against which the effect of
improvements in the model, climate forcings, and observations can be tested.
Principal model deficiencies include unrealistically weak tropical El Nino-like
variability and a poor distribution of sea ice, with too much sea ice in the
Northern Hemisphere and too little in the Southern Hemisphere. The greatest
uncertainties in the forcings are the temporal and spatial variations of
anthropogenic aerosols and their indirect effects on clouds.Comment: 44 pages; 19 figures; Final text accepted by Climate Dynamic