36 research outputs found
Single vortex-antivortex pair in an exciton polariton condensate
In a homogeneous two-dimensional system at non-zero temperature, although
there can be no ordering of infinite range, a superfluid phase is predicted for
a Bose liquid. The stabilization of phase in this superfluid regime is achieved
by the formation of bound vortex-antivortex pairs. It is believed that several
different systems share this common behaviour, when the parameter describing
their ordered state has two degrees of freedom, and the theory has been tested
for some of them. However, there has been no direct experimental observation of
the phase stabilization mechanism by a bound pair. Here we present an
experimental technique that can identify a single vortex-antivortex pair in a
two-dimensional exciton polariton condensate. The pair is generated by the
inhomogeneous pumping spot profile, and is revealed in the time-integrated
phase maps acquired using Michelson interferometry, which show that the
condensate phase is only locally disturbed. Numerical modelling based on open
dissipative Gross-Pitaevskii equation suggests that the pair evolution is quite
different in this non-equilibrium system compared to atomic condensates. Our
results demonstrate that the exciton polariton condensate is a unique system
for studying two-dimensional superfluidity in a previously inaccessible regime
Sculpting oscillators with light within a nonlinear quantum fluid
Seeing macroscopic quantum states directly remains an elusive goal. Particles
with boson symmetry can condense into such quantum fluids producing rich
physical phenomena as well as proven potential for interferometric devices
[1-10]. However direct imaging of such quantum states is only fleetingly
possible in high-vacuum ultracold atomic condensates, and not in
superconductors. Recent condensation of solid state polariton quasiparticles,
built from mixing semiconductor excitons with microcavity photons, offers
monolithic devices capable of supporting room temperature quantum states
[11-14] that exhibit superfluid behaviour [15,16]. Here we use microcavities on
a semiconductor chip supporting two-dimensional polariton condensates to
directly visualise the formation of a spontaneously oscillating quantum fluid.
This system is created on the fly by injecting polaritons at two or more
spatially-separated pump spots. Although oscillating at tuneable THz-scale
frequencies, a simple optical microscope can be used to directly image their
stable archetypal quantum oscillator wavefunctions in real space. The
self-repulsion of polaritons provides a solid state quasiparticle that is so
nonlinear as to modify its own potential. Interference in time and space
reveals the condensate wavepackets arise from non-equilibrium solitons. Control
of such polariton condensate wavepackets demonstrates great potential for
integrated semiconductor-based condensate devices.Comment: accepted in Nature Physic
Latent tuberculosis infection, tuberculin skin test and vitamin D status in contacts of tuberculosis patients: a cross-sectional and case-control study
<p>Abstract</p> <p>Background</p> <p>Deficient serum vitamin D levels have been associated with incidence of tuberculosis (TB), and latent tuberculosis infection (LTBI). However, to our knowledge, no studies on vitamin D status and tuberculin skin test (TST) conversion have been published to date. The aim of this study was to estimate the associations of serum 25-hydroxyvitamin D<sub>3 </sub>(25[OH]D) status with LTBI prevalence and TST conversion in contacts of active TB in Castellon (Spain).</p> <p>Methods</p> <p>The study was designed in two phases: cross-sectional and case-control. From November 2009 to October 2010, contacts of 42 TB patients (36 pulmonary, and 6 extra-pulmonary) were studied in order to screen for TB. LTBI and TST conversion cases were defined following TST, clinical, analytic and radiographic examinations. Serum 25(OH)D levels were measured by electrochemiluminescence immunoassay (ECLIA) on a COBAS<sup>Ÿ </sup>410 ROCHE<sup>Ÿ </sup>analyzer. Logistic regression models were used in the statistical analysis.</p> <p>Results</p> <p>The study comprised 202 people with a participation rate of 60.1%. Only 20.3% of the participants had a sufficient serum 25(OH)D (℠30 ng/ml) level. In the cross-sectional phase, 50 participants had LTBI and no association between LTBI status and serum 25(OH)D was found. After 2 months, 11 out of 93 negative LTBI participants, without primary prophylaxis, presented TST conversion with initial serum 25(OH)D levels: a:19.4% (7/36): < 20 ng/ml, b:12.5% (4/32):20-29 ng/ml, and c:0%(0/25) ℠30 ng/ml. A sufficient serum 25(OH)D level was a protector against TST conversion a: Odds Ratio (OR) = 1.00; b: OR = 0.49 (95% confidence interval (CI) 0.07-2.66); and c: OR = 0.10 (95% CI 0.00-0.76), trends p = 0.019, adjusted for high exposure and sputum acid-fast bacilli positive index cases. The mean of serum level 25(OH)D in TST conversion cases was lower than controls,17.5 ± 5.6 ng/ml versus 25.9 ± 13.7 ng/ml (p = 0.041).</p> <p>Conclusions</p> <p>The results suggest that sufficient serum 25(OH)D levels protect against TST conversion.</p
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers âŒ99% of the euchromatic genome and is accurate to an error rate of âŒ1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead