1,226 research outputs found

    Concentrations of Cadmium, Lead, and Zinc in Fish from Mining-Influenced Waters of Northeastern Oklahoma: Sampling of Blood, Carcass, and Liver for Aquatic Biomonitoring

    Get PDF
    The Tri-States Mining District (TSMD) of Missouri (MO), Kansas (KS), and Oklahoma (OK), USA, was mined for lead (Pb) and zinc (Zn) for more than a century. Mining ceased more than 30 years ago, but wastes remain widely distributed in the region, and there is evidence of surface- and groundwater contamination in the Spring River- Neosho River (SR-NR) system of northeastern OK. In October 2001, we collected a total of 74 fish from six locations in the SR-NR system that included common carp (Cyprinus carpio), channel- and flathead catfish (Ictalurus punctatus and Pylodictis olivaris), largemouth- and spotted bass (Micropterus salmoides and Micropterus punctulatus), and white crappie (Pomoxis annularis). We obtained additional fish from locations in MO that included three reference sites and one site that served as a ‘‘positive control’’ (heavily contaminated by Pb). Blood, carcass (headed, eviscerated, and scaled) and liver (carp only) samples were analyzed for cadmium (Cd), Pb, and Zn. Our objectives were to assess the degree to which fish from the OK portionof the SR-NR system are contaminated by these elements and to evaluate fish blood sampling for biomonitoring. Concentrations of Cd and Pb in carp and catfish from OK sites were elevated and Pb concentrations of some approached those of the highly contaminated site in MO, but concentrations in bass and crappie were relatively low. For Zn, correlations were weak among concentrations in the three tissues and none of the samples appeared to reflect site contamination. Variability was high for Cd inall three tissues of carp; differences between sites were statistically significant (p \u3c 0.05) only for blood even though mean liver concentrations were at least 100-fold greater than those in blood. Blood concentrations of Cd and Pb were positively correlated (r2 = 0.49 to 0.84) with the concentration of the same element in carp and catfish carcasses or in carp livers, and the corresponding multiple regression models were highly significant (p \u3c 0.001). Our data indicate that potentially nonlethal blood sampling can be useful for monitoring of selected metals in carp, catfish, and perhaps other fishes

    Concentrations of Metals in Aquatic Invertebrates from the Ozark National Scenic Riverways, Missouri

    Get PDF
    This report summarizes the findings of a study conducted as a pilot for part of a park-wide monitoring program being developed for the Ozark National Scenic Riverways (ONSR) of southeastern Missouri. The objective was to evaluate using crayfish (Orconectes spp.) and Asian clam (Corbicula fluminea) for monitoring concentrations of metals associated with lead-zinc mining. Lead-zinc mining presently (2007) occurs near the ONSR and additional mining has been proposed. Three composite samples of each type (crayfish and Asian clam), each comprising ten animals of approximately the same size, were collected during late summer and early fall of 2005 from five sites on the Current River and Jacks Fork within the ONSR and from one site on the Eleven Point River and the Big River, which are outside the ONSR. The Big River has been contaminated by mine tailings from historical leadzinc mining. Samples were analyzed by inductively coupled plasma mass spectrometry for lead, zinc, cadmium, cobalt, and nickel concentrations. All five metals were detected in all samples; concentrations were greatest in samples of both types from the Big River, and lowest in samples from sites within the ONSR. Concentrations of zinc and cadmium typically were greater in Asian clams than in crayfish, but differences were less evident for the other metals. In addition, differences among sites were small for cobalt in Asian clams and for zinc in crayfish, indicating that these metals are internally regulated to some extent. Consequently, both sample types are recommended for monitoring. Concentrations of metals in crayfish and Asian clams were consistent with those reported by other studies and programs that sampled streams in southeast Missouri

    Biomonitoring of Lead, Zinc, and Cadmium in Streams Draining Lead-Mining and Non-Mining Areas, Southeast Missouri, USA

    Get PDF
    We evaluated exposure of aquatic biota to lead (Pb), zinc (Zn), and cadmium (Cd) in streams draining a Pb-mining district in southeast Missouri. Samples of plant biomass (detritus, periphyton, and filamentous algae), invertebrates (snails, crayfish, and riffle benthos), and two taxa of fish were collected from seven sites closest to mining areas (mining sites), four sites further downstream from mining (downstream sites), and eight reference sites in fall 2001. Samples of plant biomass from mining sites had highest metal concentrations, with means 10- to 60- times greater than those for reference sites. Mean metal concentrations in over 90% of samples of plant biomass from mining sites were significantly greater than those from reference sites. Mean concentrations of Pb, Zn, and Cd in most invertebrate samples from mining sites, and mean Pb concentrations in most fish samples from mining sites, were also significantly greater than those from reference sites. Concentrations of all three metals were lower in samples from downstream sites, but several samples of plant biomass from downstream sites had metal concentrations significantly greater than those from reference sites. Analysis of supplemental samples collected in the fall of 2002, a year of above-average stream discharge, had lower Pb concentrations and higher Cd concentrations than samples collected in 2001, near the end of a multi-year drought. Concentrations of Pb measured in fish and invertebrates collected from mining sites during 2001 and 2002 were similar to those measured at nearby sites in the 1970s, during the early years of mining in the Viburnum Trend. Results of this study demonstrate that long-term Pb mining activity in southeast Missouri has resulted in significantly elevated concentrations of Pb, Cd, and Zn in biota of receiving streams, compared to biota of similar streams without direct influence of mining. Our results also demonstrate that metal exposure in the study area differed significantly among sample types, habitats, and years, and that these factors should be carefully considered in the design of biomonitoring studies

    Concentrations of Metals in Aquatic Invertebrates from the Ozark National Scenic Riverways, Missouri

    Get PDF
    This report summarizes the findings of a study conducted as a pilot for part of a park-wide monitoring program being developed for the Ozark National Scenic Riverways (ONSR) of southeastern Missouri. The objective was to evaluate using crayfish (Orconectes spp.) and Asian clam (Corbicula fluminea) for monitoring concentrations of metals associated with lead-zinc mining. Lead-zinc mining presently (2007) occurs near the ONSR and additional mining has been proposed. Three composite samples of each type (crayfish and Asian clam), each comprising ten animals of approximately the same size, were collected during late summer and early fall of 2005 from five sites on the Current River and Jacks Fork within the ONSR and from one site on the Eleven Point River and the Big River, which are outside the ONSR. The Big River has been contaminated by mine tailings from historical leadzinc mining. Samples were analyzed by inductively coupled plasma mass spectrometry for lead, zinc, cadmium, cobalt, and nickel concentrations. All five metals were detected in all samples; concentrations were greatest in samples of both types from the Big River, and lowest in samples from sites within the ONSR. Concentrations of zinc and cadmium typically were greater in Asian clams than in crayfish, but differences were less evident for the other metals. In addition, differences among sites were small for cobalt in Asian clams and for zinc in crayfish, indicating that these metals are internally regulated to some extent. Consequently, both sample types are recommended for monitoring. Concentrations of metals in crayfish and Asian clams were consistent with those reported by other studies and programs that sampled streams in southeast Missouri

    Prevalence of Noncardiac Findings in Patients Undergoing Cardiac Magnetic Resonance Imaging

    Get PDF
    Purpose. We sought to determine the prevalence of clinically significant non-cardiac abnormalities found in pediatric and adult patients undergoing cardiac magnetic resonance imaging (CMRI), and understand the impact of age on it's occurrence. Methods. We retrospectively reviewed all patients undergoing CMRI between May 2004 and July 2007. Findings were considered significant if they required radiographic or clinical follow-up. Results. A total of 408 patients underwent CMRI during the study period. Twenty two (16%) pediatric patients (age < 19 years, n = 135) were found to have a total of 22 non- cardiac abnormalities, 3 of which were clinically significant. Sixty four (23%) adult patients (age > 19 years, n = 273) were found to have a total of 77 non-cardiac abnormalities, 33 of which were clinically significant. The prevalence of clinically significant non-cardiac abnormalities was 2% in the pediatric cohort and 11% in the adult cohort (P = 0.05). Within the adult population, the prevalence of significant non-cardiac abnormalities increased with advancing age (P = 0.05). Conclusions. In a population of unselected patients undergoing CMRI, unanticipated noncardiac abnormalities were frequently seen. A small number of these were significant, with the prevalence increasing with age

    Assessment of Elemental Concentrations in Streams of the New Lead Belt in Southeastern Missouri, 2002–05

    Get PDF
    Concerns about possible effects of lead-mining activities on the water quality of federally protected streams located in southeastern Missouri prompted a suite of multidisciplinary studies to be conducted by the U.S. Geological Survey. As part of this investigation, a series of biological studies were initiated in 2001 for streams in the current mining region and the prospecting area. In this report, results are examined for trace elements and other selected chemical measurements in sediment, surface water, and sediment interstitial (pore) water sampled between 2002 and 2005 in association with these biological studies. Compared to reference sites, fine sediments collected downstream from mining areas were enriched in metals by factors as large as 75 for cadmium, 62 for cobalt, 171 for nickel, 95 for lead, and 150 for zinc. Greatest metal concentrations in sediments collected in 2002 were from sites downstream from mines on Strother Creek, Courtois Creek, and the West Fork Black River. Sediments from sites on Bee Fork, Logan Creek, and Sweetwater Creek also were noticeably enriched in lead. Sediments in Clearwater Lake, at least 75 kilometers downstream from mining activity, had metal concentrations that were 1.5 to 2.1 times greater than sediments in an area of the lake with no upstream mining activity. Longitudinal sampling along three streams in 2004 indicated that sediment metal concentrations decreased considerably a few kilometers downstream from mining activities; however, in Strother Creek some metals were still enriched by a factor of five or more as far as 13 kilometers downstream from the Buick tailings impoundment. Compared with 2002 samples, metals concentrations were dramatically lower in sediments collected in 2004 at an upper West Fork Black River site, presumably because beneficiation operations at the West Fork mill ceased in 2000. Concentrations of metals and sulfate in sediment interstitial (pore) waters generally tracked closely with metal concentrations in sediments. Metals, including cobalt, nickel, lead, and zinc, were elevated substantially in laboratory-produced pore waters of fine sediments collected near mining operations in 2002 and 2004. Passive diffusion samplers (peepers) buried 4 to 6 centimeters deep in riffle-run stream sediments during 2003 and 2005 had much lower pore-water metal concentrations than the laboratory-produced pore waters of fine sediments collected in 2002 and 2004, but each sampling method produced similar patterns among sites. The combined mean concentration of lead in peeper samples from selected sites located downstream from mining activities for six streams was about 10-fold greater than the mean of the reference sites. In most instances, metals concentrations in surface water and peeper water were not greatly different, indicating considerable exchange between the surface water and pore water at the depths and locations where peepers were situated. Passive sampling probes used to assess metal lability in pore waters of selected samples during 2004 sediment toxicity tests indicated that most of the filterable lead in the laboratory-prepared pore water was relatively non-labile, presumably because lead was complexed by organic matter, or was present as colloidal species. In contrast, large percentages of cobalt and nickel in pore water appeared to be labile. Passive integrative samplers deployed in surface water for up to 3 weeks at three sites in July 2005 confirmed the presence of elevated concentrations of labile metals downstream from mining operations on Strother Creek and, to a lesser extent, Bee Fork. These samplers also indicated a considerable increase in metal loadings occurred for a few days at the Strother Creek site, which coincided with moderate increases in stream discharges in the area

    Proteins associated with pancreatic cancer survival in patients with resectable pancreatic ductal adenocarcinoma.

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with a dismal prognosis. However, while most patients die within the first year of diagnosis, very rarely, a few patients can survive for &gt;10 years. Better understanding the molecular characteristics of the pancreatic adenocarcinomas from these very-long-term survivors (VLTS) may provide clues for personalized medicine and improve current pancreatic cancer treatment. To extend our previous investigation, we examined the proteomes of individual pancreas tumor tissues from a group of VLTS patients (survival ≥10 years) and short-term survival patients (STS, survival &lt;14 months). With a given analytical sensitivity, the protein profile of each pancreatic tumor tissue was compared to reveal the proteome alterations that may be associated with pancreatic cancer survival. Pathway analysis of the differential proteins identified suggested that MYC, IGF1R and p53 were the top three upstream regulators for the STS-associated proteins, and VEGFA, APOE and TGFβ-1 were the top three upstream regulators for the VLTS-associated proteins. Immunohistochemistry analysis using an independent cohort of 145 PDAC confirmed that the higher abundance of ribosomal protein S8 (RPS8) and prolargin (PRELP) were correlated with STS and VLTS, respectively. Multivariate Cox analysis indicated that 'High-RPS8 and Low-PRELP' was significantly associated with shorter survival time (HR=2.69, 95% CI 1.46-4.92, P=0.001). In addition, galectin-1, a previously identified protein with its abundance aversely associated with pancreatic cancer survival, was further evaluated for its significance in cancer-associated fibroblasts. Knockdown of galectin-1 in pancreatic cancer-associated fibroblasts dramatically reduced cell migration and invasion. The results from our study suggested that PRELP, LGALS1 and RPS8 might be significant prognostic factors, and RPS8 and LGALS1 could be potential therapeutic targets to improve pancreatic cancer survival if further validated
    corecore