11 research outputs found

    Mean shear flows generated by nonlinear resonant Alfven waves

    Full text link
    In the context of resonant absorption, nonlinearity has two different manifestations. The first is the reduction in amplitude of perturbations around the resonant point (wave energy absorption). The second is the generation of mean shear flows outside the dissipative layer surrounding the resonant point. Ruderman et al. [Phys. Plasmas 4, 75 (1997)] studied both these effects at the slow resonance in isotropic plasmas. Clack et al. [Astron. Astrophys. 494}, 317 (2009)] investigated nonlinearity at the Alfven resonance, however, they did not include the generation of mean shear flow. In this present paper, we investigate the mean shear flow, analytically, and study its properties. We find that the flow generated is parallel to the magnetic surfaces and has a characteristic velocity proportional to ϵ1/2\epsilon^{1/2}, where ϵ\epsilon is the dimensionless amplitude of perturbations far away from the resonance. This is, qualitatively, similar to the flow generated at the slow resonance. The jumps in the derivatives of the parallel and perpendicular components of mean shear flow across the dissipative layer are derived. We estimate the generated mean shear flow to be of the order of 10kms110{\rm kms}^{-1} in both the solar upper chromosphere and solar corona, however, this value strongly depends on the choice of boundary conditions. It is proposed that the generated mean shear flow can produce a Kelvin--Helmholtz instability at the dissipative layer which can create turbulent motions. This instability would be an additional effect, as a Kelvin--Helmholtz instability may already exist due to the velocity field of the resonant Alfven waves. This flow can also be superimposed onto existing large scale motions in the solar upper atmosphere.Comment: 11 page

    Nonlinear resonant absorption of fast magnetoacoustic waves in strongly anisotropic and dispersive plasmas

    Get PDF
    The nonlinear theory of driven magnetohydrodynamics (MHD) waves in strongly anisotropic and dispersive plasmas, developed for slow resonance by Clack and Ballai [Phys. Plasmas 15, 2310 (2008)] and Alfvén resonance by Clack et al. [Astron. Astrophys. 494, 317 (2009)] , is used to study the weakly nonlinear interaction of fast magnetoacoustic (FMA) waves in a one-dimensional planar plasma. The magnetic configuration consists of an inhomogeneous magnetic slab sandwiched between two regions of semi-infinite homogeneous magnetic plasmas. Laterally driven FMA waves penetrate the inhomogeneous slab interacting with the localized slow or Alfvén dissipative layer and are partly reflected, dissipated, and transmitted by this region. The nonlinearity parameter defined by Clack and Ballai (2008) is assumed to be small and a regular perturbation method is used to obtain analytical solutions in the slow dissipative layer. The effect of dispersion in the slow dissipative layer is to further decrease the coefficient of energy absorption, compared to its standard weakly nonlinear counterpart, and the generation of higher harmonics in the outgoing wave in addition to the fundamental one. The absorption of external drivers at the Alfvén resonance is described within the linear MHD with great accuracy

    Nonlinear theory of resonant slow waves in anisotropic and dispersive plasmas

    Get PDF
    The solar corona is a typical example of a plasma with strongly anisotropic transport processes. The main dissipative mechanisms in the solar corona acting on slow magnetoacoustic waves are the anisotropic thermal conductivity and viscosity [Ballai et al., Phys. Plasmas 5, 252 (1998)] developed the nonlinear theory of driven slow resonant waves in such a regime. In the present paper the nonlinear behavior of driven magnetohydrodynamic waves in the slow dissipative layer in plasmas with strongly anisotropic viscosity and thermal conductivity is expanded by considering dispersive effects due to Hall currents. The nonlinear governing equation describing the dynamics of nonlinear resonant slow waves is supplemented by a term which describes nonlinear dispersion and is of the same order of magnitude as nonlinearity and dissipation. The connection formulas are found to be similar to their nondispersive counterparts

    Designing the climate observing system of the future

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth's Future 6 (2018): 80–102, doi:10.1002/2017EF000627.Climate observations are needed to address a large range of important societal issues including sea level rise, droughts, floods, extreme heat events, food security, and freshwater availability in the coming decades. Past, targeted investments in specific climate questions have resulted in tremendous improvements in issues important to human health, security, and infrastructure. However, the current climate observing system was not planned in a comprehensive, focused manner required to adequately address the full range of climate needs. A potential approach to planning the observing system of the future is presented in this article. First, this article proposes that priority be given to the most critical needs as identified within the World Climate Research Program as Grand Challenges. These currently include seven important topics: melting ice and global consequences; clouds, circulation and climate sensitivity; carbon feedbacks in the climate system; understanding and predicting weather and climate extremes; water for the food baskets of the world; regional sea-level change and coastal impacts; and near-term climate prediction. For each Grand Challenge, observations are needed for long-term monitoring, process studies and forecasting capabilities. Second, objective evaluations of proposed observing systems, including satellites, ground-based and in situ observations as well as potentially new, unidentified observational approaches, can quantify the ability to address these climate priorities. And third, investments in effective climate observations will be economically important as they will offer a magnified return on investment that justifies a far greater development of observations to serve society's needs

    Between the Vinča and Linearbandkeramik worlds: the diversity of practices and identities in the 54th–53rd centuries cal BC in south-west Hungary and beyond

    Get PDF
    Szederkény-Kukorica-dűlő is a large settlement in south-east Transdanubia, Hungary, excavated in advance of road construction, which is notable for its combination of pottery styles, variously including Vinča A, Ražište and LBK, and longhouses of a kind otherwise familiar from the LBK world. Formal modelling of its date establishes that the site probably began in the later 54th century cal BC, lasting until the first decades of the 52nd century cal BC. Occupation, featuring longhouses, pits and graves, probably began at the same time on the east and west parts of the settlement, the central part starting a decade or two later; the western part was probably abandoned last. Vinča pottery is predominantly associated with the east and central parts of the site, and Ražište pottery with the west. Formal modelling of the early history and diaspora of longhouses in the LBK world suggests their emergence in the Formative LBK of Transdanubia c. 5500 cal BC and then rapid diaspora in the middle of the 54th century cal BC, associated with the ‘earliest’ (älteste) LBK. The adoption of longhouses at Szederkény thus appears to come a few generations after the start of the diaspora. Rather than explaining the mixture of things, practices and perhaps people at Szederkény by reference to problematic notions such as hybridity, we propose instead a more fluid and varied vocabulary including combination and amalgamation, relationships and performance in the flow of social life, and networks; this makes greater allowance for diversity and interleaving in a context of rapid change

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Between the Vinča and Linearbandkeramik Worlds: The Diversity of Practices and Identities in the 54th–53rd Centuries cal BC in Southwest Hungary and Beyond

    Get PDF
    corecore