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Nonlinear resonant absorption of fast magnetoacoustic waves in strongly anisotropic

and dispersive plasmas

Christopher TM Clack and Istvan Ballai
Solar Physics and Space Plasma Research Centre (SP

2
RC),

Department of Applied Mathematics, University of Sheffield,
Hicks Building, Hounsfield Road, Sheffield, S3 7RH, U.K.

The nonlinear theory of driven magnetohydrodynamics (MHD) waves in strongly anisotropic and
dispersive plasmas, developed for slow resonance by Clack & Ballai [Phys. Plasmas 15(8), 2310
(2008)] and Alfvén resonance by Clack et al. [A&A 494, 317 (2009)], is used to study the weakly
nonlinear interaction of fast magnetoacoustic (FMA) waves in a one-dimensional planar plasma.
The magnetic configuration consists of an inhomogeneous magnetic slab sandwiched between two
regions of semi-infinite homogeneous magnetic plasmas. Laterally driven FMA waves penetrate the
inhomogeneous slab interacting with the localized slow or Alfvén dissipative layer and are partly
reflected, dissipated and transmitted by this region. The nonlinearity parameter defined by Clack &
Ballai (2008) is assumed to be small and a regular perturbation method is used to obtain analytical
solutions in the slow dissipative layer. The effect of dispersion in the slow dissipative layer is to
further decrease the coefficient of energy absorption, compared to its standard weakly nonlinear
counterpart, and the generation of higher harmonics in the outgoing wave in addition to the fun-
damental one. The absorption of external drivers at the Alfvén resonance is described within the
linear MHD with great accuracy.

PACS numbers: 52.25.Fi; 52.30.Cv; 52.35.-g; 52.35.Bj; 52.35.Mw

I. INTRODUCTION

The problem of interacting fast magnetoacoustic
(FMA) waves with different magnetic structures is not
only important in the context of astrophysics and solar
physics, but also in laboratory plasma devices. Space
and laboratory plasmas are highly non-uniform and dy-
namical systems and as a consequence they are a natural
medium for magnetohydrodynamic (MHD) waves. When
the magnetic plasma configuration is inhomogeneous in
the transversal direction relative to the ambient magnetic
field a phenomenon, known as resonant absorption, oc-
curs (see, e.g., Appert et al. [1] and Ionson [2]). Some
of the wave energy can be converted into heat in a thin
layer which embraces the ideal resonant magnetic surface
when dissipative processes are taken into account.

In the context of solar physics, the resonant coupling
of waves was first suggested by Ionson(author?) [3] as
a possible mechanism for heating coronal loops. Shortly
after, several studies on the efficiency of resonant ab-
sorption in the complicated process of coronal heating
were published by, e.g., Ionson(author?) [2], Kupe-
rus et al.(author?) [4], Davila(author?) [5] and Holl-
weg(author?) [6]. The same principle was used to ex-
plain the observed loss of power of acoustic oscillations
in the vicinity of sunspots by, e.g., Hollweg(author?)
[7], Lou(author?) [8], Sakurai et al.(author?) [9],
Goossens and Poedts(author?) [10], Goossens and Holl-
weg(author?) [11] and Stenuit et al.(author?) [12].
All these studies dealt with the Alfvén resonant posi-
tion. Although happening at lower frequencies, slow res-
onance is also important as shown in a study by Kep-
pens(author?) [13] where he investigated the interac-
tion of sound waves with hot evacuated magnetic fibrils.

Most of the analytical studies of resonant absorption were
based on the linear theory due to its relative simplicity.

A new approach to the problem of resonant absorp-
tion in the context of high Reynolds number plasmas was
given by Ruderman et al.(author?) [14] who developed
a nonlinear theory of resonant absorption for slow waves
in isotropic plasmas. They pointed out that nonlinearity
has to be taken into account under typical solar condi-
tions near resonance. The theory of nonlinear resonant
slow waves was extended to strongly anisotropic plasmas
in Ballai et al.(author?) [15] to describe conditions typ-
ical for the solar chromosphere and corona. Over the
next few years there was an enormous amount of effort
put into studying resonant absorption, including the in-
vestigation of the effect of equilibria flows at the slow res-
onance (see, e.g., Ballai and Erdélyi [16]), the absorption
of sound waves at the slow dissipative layers in isotropic
and anisotropic plasmas (see, e.g., Ruderman et al. [17]
and Ballai et al. [18]) and the effect of an equilibrium
flow on the absorption of sound and FMA waves due to
the coupling in the slow continua (see, e.g., Erdélyi and
Ballai [19] and Erdélyi et al. [20]). In a recent paper,
Clack and Ballai(author?) [21] showed that in strongly
anisotropic and dispersive plasmas the dispersion, dissi-
pation and nonlinearity are all of the same order inside
the dissipative layer.

A study by Clack et al.(author?) [22] on the nonlinear
effects at the Alfvén dissipative layer found that nonlin-
earity and dispersion are always negligible in comparison
to the linear terms describing dissipation. This implies
that the linear theory is always applicable for resonant
absorption at the Alfvén resonance if the dimensionless
amplitude of perturbations inside the dissipative layer are
less than unity. Moreover, Clack et al.(author?) [22]

http://uk.arxiv.org/abs/0903.0948v1
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showed that the largest nonlinear and dispersive terms
cancel out - leaving only small corrections to linear the-
ory.

Many studies of resonant absorption considered only
the sound (or slow) and Alfvén waves as excellent candi-
dates for coronal heating. Alfvén waves can only carry
energy along the magnetic field lines and slow waves are
only able to carry 1 − 2% of energy under coronal (low
plasma-β) conditions. However, FMA waves might have
an important role in explaining the coronal temperatures,
as has been shown by, e.g., C̆adez̆ et al.(author?) [23]
and Cśık et al.(author?) [24].

The aim of the present paper is to study the nonlinear
(linear) resonant interaction of externally driven FMA
waves with the slow (Alfvén) dissipative layer in strongly
anisotropic and dispersive static plasmas. The governing
equations and jump conditions derived earlier by Clack
and Ballai(author?) [21] and Clack et al.(author?) [22]
will be used to study the efficiency of absorption at the
slow and Alfvén resonance. The paper is organized as
follows. In the next section we introduce the governing
equations, the equilibrium state and the fundamental as-
sumptions which allow analytical progress. In Sec. III
we find the solutions describing the waves outside the
dissipative layers. Section IV is devoted to the nonlinear
solution inside the slow dissipative layer. In Sec. V we
derive the solution inside the Alfvén dissipative layer. In
Sec. VI we will calculate the absorption coefficient in the
case of slow/Alfvén resonance. Finally, in Sec. VII we
summarize our results and draw our conclusions.

II. GOVERNING EQUATIONS AND

ASSUMPTIONS

The dynamics and absorption of the waves will be stud-
ied in a Cartesian coordinate system. The equilibrium
state is shown in Figure 1. The configuration consists
of an inhomogeneous magnetized plasma 0 < x < x0

(Region II) sandwiched between two semi-infinite homo-
geneous magnetized plasmas x < 0 and x > x0 (Regions
I and III, respectively). We have chosen this model to ob-
tain analytical results. Our intention is to have a model
which gives us the trend in the absorption of an inci-
dent wave on a magnetic structure. It is obvious that
real magnetic structures are more complicated (and far
from being fully understood), however, the magnetic field
has been simplified to be unidirectional in order to make
the model more transparent, such that the role of the
dispersion at the resonance and the change in the ab-
sorption can be investigated more fully, and compared
to previous studies. We took inspiration for this model
from seminal studies such as Ruderman et al.(author?)
[17], Ballai et al.(author?) [18], Erdélyi(author?) [20],
Roberts(author?) [25], Edwin and Roberts(author?)
[26] and Ruderman(author?) [27].

The equilibrium density and pressure are denoted by
ρ and p. The equilibrium magnetic field, B, is unidi-

y
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x0

0
α

Incoming FMA wave

φ

Region I Region II Region III

Be, ρe B0(x), ρ0(x) Bi, ρi

Dissipative layer

FIG. 1: Illustration of the equilibrium state. Regions I (x < 0)
and III (x > 0) contain a homogeneous magnetized plasma
and Region II (0 < x < x0) an inhomogeneous magnetized
plasma. The shaded strip shows the dissipative layer embrac-
ing the ideal resonant position xc.

rectional and lies in the yz-plane. In what follows the
subscripts “e”, “0” and “i” denote the equilibrium quan-
tities in the three regions (Regions I, II, III, respectively).
It is convenient to introduce the angle, α, between the z-
axis and the direction of the equilibrium magnetic field,
so that the components of the equilibrium magnetic field
are; By = B sinα and Bz = B cosα. All equilibrium
quantities are continuous at the boundaries of Region II,
so they satisfy the equation of total pressure balance. It
follows from the equation of total pressure that the den-
sity ratio between Regions I and III satisfy the relation

ρi

ρe
=

2c2
Se + γv2

Ae

2c2
Si + γv2

Ai

, (1)

where the squares of the Alfvén and sound speed are v2
A =

B2
0/µ0ρ0 and c2

S = γp0/ρ0. Where µ0 is the magnetic
permeability of free space and γ is the adiabatic constant.
Replace the subscript “0” with “e” for Region I and “i”
for Region III. We consider a hot magnetized plasma such
that c2

Si > c2
Se, and v2

Ai > v2
Ae.

The objective of the present paper is to study (i) the
combined effect of nonlinearity and dispersion on the in-
teraction of incoming fast waves with slow dissipative lay-

ers and (ii) the interaction of incoming fast waves with
Alfvén dissipative layers. We, therefore, have two dif-
ferent criteria. For interaction of FMA waves with the
slow dissipative layer we assume that the frequency of the
incoming fast wave is within the slow continuum of the
inhomogeneous plasma, so that there is a slow resonant
position at x = xc in Region II. Interactions with the
Alfvén dissipative layer leads to the assumption that the
frequency of the incoming fast wave is within the Alfvén
continuum of the inhomogeneous plasma, so that there
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is an Alfvén resonant point at x = xa in Region II. This
leads to the inequality, cTe < ω/k < cTi, at the slow reso-
nance. Where the square of the cusp speed, c2

T , is defined
by c2

T = c2
Sv2

A/(c2
S + v2

A). We also have the inequality,
vAe < ω/k < vAi, for Alfvén resonance. Here ω is the fre-
quency of the incoming fast wave and k = (k2

x + k2
z)

1/2 is
the wave number. Even though, in principle, when a slow
resonance occurs in this manner an Alfvén resonance is
also present we ignore the Alfvén resonance that occurs
alongside the slow resonance as this would complicate the
analysis and obscure the results associated with the slow
resonance. We study the Alfvén resonance separately to
the slow resonance. We note that the Alfvén resonance
would, in simple terms, act to restrict the energy avail-
able at the slow resonance. We intend to address the issue
of coupled resonances in our next paper, where we will
show that the governing equations derived here remain
the same (meaning the work here is valid), however, the
interaction of the waves between the resonant positions
changes the absorption of wave energy.

In an attempt to remove other effects from the analysis
we consider the incoming fast wave to be entirely in the
xz-plane, i.e. ky = 0. Ruderman et al.(author?) [17]
suggests aligning the equilibrium magnetic field with the
z-axis, to remove the Alfvén resonance (if we consider
planar waves) from the analysis for slow resonance, how-
ever, this is not possible nor necessary here. The disper-
sion is dependent on the angle between the equilibrium
magnetic field and the z-axis (α), hence if α = 0 the dis-
persion effects disappear, and we recover the governing
equation studied by Ballai et al.(author?) [18].

The inequalities above guarantee that the slow and
Alfvén resonances appears in Region II when studying
in the upper chromosphere and the solar corona, re-
spectively. The resonant positions, therefore, are de-
fined mathematically as: ωc = kcT (xc) cosα and ωa =
kvA(xa) cosα. The position of the resonant points also
provides us with some information about the plasma con-
dition. First, in conjunction with Eq. (1) we obtain that

ρi

ρe
=

2c2
Se + γv2

Ae

2c2
Si + γv2

Ai

< 1. (2)

Hence, the plasma in region III is more rarefied than in
Region I. Secondly, it follows that cTe < cTi and the
plasma in Region III is hotter than the plasma in Region
I.

The dispersion relation for the impinging propagating
fast waves takes the form

ω2

k2
=

1

2

{(
v2

A + c2
S

)
+

[(
v2

A + c2
S

)2
− 4v2

Ac2
S cos2 φ

]1/2
}

,

(3)
where φ is the angle between the direction of propagation
and the background magnetic field within the xz-plane
and k = kxex + kzez . For the sake of simplicity, we
denote κe as the ratio kx/kz. Since the equilibrium mag-
netic field in the xz-plane is aligned with the z-axis, the

dispersion relation (3) becomes

ω2

k2
=

1

2

{
(
v2

A + c2
S

)
+

[(
v2

A + c2
S

)2
− 4

v2
Ac2

S

1 + κ2
e

]1/2
}

,

(4)
where 1 + κ2

e = 1/ cos2 φ.

We assume the plasma is strongly magnetized in the
three regions, such that the conditions ωi(e)τi(e) ≫ 1 are
satisfied, here ωi(e) is the ion (electron) gyrofrequency
and τi(e) is the ion (electron) collision time. Due to
the strong magnetic field, transport processes are derived
from Braginskii’s stress tensor (see, e.g., Braginskii[28];
Ruderman et al.[29]). As we deal with two separate
waves (slow and Alfvén), we will need to choose the
particular dissipative process which is most efficient for
these waves. For slow waves, it is a good approximation
to retain only the first term of Braginksii’s expression
for viscosity, namely compressional viscosity(author?)
[30]. In addition, in the solar upper atmosphere slow
waves are sensitive to thermal conduction. In a strongly
magnetized plasma, the thermal conductivity parallel to
the magnetic field lines dwarfs the perpendicular com-
ponent, hence the heat flux can be approximated by the
parallel component only(author?) [31]. On the other
hand, since Alfvén waves are transversal and incompress-
ible they are affected by the second and third compo-
nents of Braginskii’s stress tensor, called shear viscos-
ity(author?) [22]. Finally, Alfvén waves are efficiently
damped by finite electrical conductivity, which becomes
anisotropic under coronal conditions. The parallel and
perpendicular components, however, only differ by a fac-
tor of 2, so we will only consider one of them without
loss of generality. All other transport mechanisms can
be neglected. For further details, please refer to, for ex-
ample, Clack et al.(author?) [22], Braginskii(author?)
[28], Ruderman et al.(author?) [29], Hollweg(author?)
[30], Priest(author?) [31] and Porter et al.(author?)
[32].

The dynamics of nonlinear resonant MHD waves in
anisotropic and dispersive plasmas was studied by Clack
and Ballai(author?) [21] and Clack et al.(author?)
[22]. They derived the governing equations and con-
nection formulae necessary to study resonant absorp-
tion in slow/Alfvén dissipative layers. We recall the
key steps and necessary results found by Clack and Bal-
lai(author?) [21] and Clack et al.(author?) [22].

The efficiency of dissipation, when studying slow dissi-
pative layers, in an anisotropic plasma is given by the
(compressional) viscous Reynolds number (Re(c)) and
the Pechlet number (Pe), combining to define the to-
tal Reynolds number: R−1

c = R−1
e(c) + P−1

e , where Re(c)

and Pe are defined by Re(c) = vchlchρ0c
/η̄0 and Pe =

vchlchρ0cR̃/κ̄‖. Here vch is the characteristic velocity
(e.g. the slow magnetoacoustic velocity at x = xc), lch

is the characteristic length, ρ0c = ρ0(xc), R̃ denotes the
gas constant and κ‖ is the coefficient of thermal con-
ductivity parallel to the equilibrium magnetic field lines.
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The efficiency of dissipation, when studying Alfvén dis-
sipative layers, in an anisotropic plasma is measured in
a slightly different way. Now dissipative processes are
described by the (shear) viscous Reynolds number (Re)
and the magnetic Reynolds number (Rm), combining to
define the total Reynolds number: R−1

a = R−1
e + R−1

m ,
where Re = vchlchρ0a

/η̄1 and Rm = vchlch/η̄. Here vch

is the characteristic velocity (e.g. the Alfvén velocity
at x = xa), lch is the characteristic length, η1 is the
coefficient of shear viscosity and η is the coefficient of fi-
nite electrical resistivity. Originally, these total Reynolds
numbers were introduced based on intuition, simplicity
and linear theory (see, e.g., Sakurai et al. [9], Goossens
et al. [34] and Goossens and Ruderman [35]). However,
it turned out that using these definitions the strength of
dissipation is the same order of magnitude as the inverse
of the total Reynolds numbers. Under chromospheric and
coronal conditions R ≫ 1 which means that dissipation
is only important inside the dissipative layer. Far away
from the dissipative layer amplitudes are small, therefore
we can use the linear ideal MHD equations to describe
the plasma motions far from the resonant position. These
equations can be reduced to a system of coupled first or-
der PDE’s for the total pressure perturbation, P , and the
normal component of the velocity, u,

∂u

∂x
=

V

F

∂P

∂θ
,

∂P

∂x
=

ρ0A

V

∂u

∂θ
. (5)

Here

F =
ρ0AC

V 4 − V 2 (v2
A + c2

S) + v2
Ac2

S cos2 α
,

C =
(
v2

A + c2
S

) (
V 2 − c2

T cos2 α
)
,

A = V 2 − v2
A cos2 α. (6)

The system (5) describes the wave motion far from the
ideal resonant position. The singularities in the coeffi-
cients A and C give the conditions of Alfvén and slow
resonance. All perturbations depend on the combination
θ = z − V t, where V = ω/k is the phase speed.

Inside the thin dissipative layers (where the dynamics
is described by the nonlinear and dissipative MHD equa-
tions) embracing the ideal resonant surfaces (x = xc, x =
xa) we must use the governing equations derived by Clack
and Ballai(author?) [21] and Clack et al.(author?) [22].
The characteristic thickness of the slow dissipative layer,
δc, is

δc =
V 3kλ

|∆c| (c2
Sc + v2

Ac) .
(7)

Here k = 2π/L with L the wavelength, the subscript “c”
indicates that the quantity has been calculated at the
slow resonant position. The quantity λ is defined by

λ =
η0

(
2v2

Ac
+ 3c2

Sc

)2

3ρ0c
v2

Ac
c2
Sc

+
(γ − 1)2κ‖

(
v2

Ac
+ c2

Sc

)

γρ0c
R̃c2

Sc

, (8)

and ∆c is simply the gradient of the cusp speed given by
∆c = −

(
dc2

T /dx
)
c
cos2 α. Clack and Ballai(author?)

[21] showed that nonlinearity and dispersion are impor-
tant in the slow dissipative layer if the nonlinearity pa-
rameter is greater than unity, N2 = ǫR2

c & 1, where ǫ
is the dimensionless wave amplitude far from the dissi-
pative layer. The concept of nonlinear parameters was
introduced by Ruderman et al.(author?) [14] for slow
waves and Clack et al.(author?) [22] for Alfvén waves.
The two parameters are different not only in their form
but also in the values the Reynolds numbers take. In the
case of slow waves (damped by compressional viscosity,
i.e. the first term in the Braginskii’s viscosity tensor)
the Reynolds number that corresponds to a characteris-
tic length of 200Mm, a speed of 200kms−1, a density of
10−13kgm−3 and a compressional viscosity coefficient of
5 × 10−2kgm−1s−1 is about 80. Alfvén waves are effi-
ciently damped by shear viscosity which is given by the
second and third coefficients of the Bragisnkii’s tensor
(here denoted cumulatively as η1). Since η1 = η0/(ωiτi)

2

and under coronal conditions ωiτi is of the order of 105,
we obtain that the coefficient of shear viscosity is about
10 orders of magnitude smaller than the coefficient of
compressional viscosity. Now, using the characteristic
speed of 1000kms−1, the Reynolds number used in cal-
culating the nonlinear parameter in the case of Alfvén
nonlinearity is 4 × 1012. The nonlinearity parameter for
resonant Alfvén waves is ǫR2/3 ≪ 1. However, it was
shown by Clack et al.(author?) [22] that the waves in
this situation remain linear anyway. In the present pa-
per, therefore, we do not need the nonlinearity parameter
for resonant Alfvén waves. The characteristic thickness
of the Alfvén dissipative layer, δa, is

δa =

[
V

k|∆a|

(
η̄ +

η̄1

ρ0a

)]1/3

, (9)

with ∆a being the gradient of the Alfvén speed given by
∆a = −

(
dv2

A/dx
)
a
cos2 α.

The governing equation inside the slow dissipative
layer is(author?) [21]

σc
∂qc

∂θ
+ Λqc

∂qc

∂θ
− k−1 ∂2qc

∂θ2

− Ψ
∂qc

∂σ

∂qc

∂θ
= −

kV 4

ρ0c
v2

Ac
|∆c|

dP̃

dθ
, (10)

where

σc =
x − xc

δc
, (11)

Λ = R2
v4

Ac
|∆|

[
(γ + 1)v2

Ac
+ 3c2

Sc

]

kV 8
, (12)

Ψ = R2 χ|∆|2c2
Sc

v2
Ac

(v2
Ac

+ c2
Sc

) sin α

kV 13
, (13)

χ = ηωeτe. (14)

Here the first term of the governing equation appears
due to the inhomogeneity in the cusp speed, the second
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term describes the nonlinearity of waves, the third term
stands for the dissipative effects while the last term on
the left-hand side describes the nonlinear dispersive ef-
fects generated after taking into account Hall currents by
Clack and Ballai(author?) [21]. The term on the right-
hand side can be considered as a driver. We also note
that qc(σc, θ) is the dimensionless component of velocity
parallel to the equilibrium magnetic field and χ = ηωeτe

is the coefficient of Hall conduction(author?) [21].
The governing equation inside the Alfvén dissipative

layer is(author?) [22]

σa
∂qa

∂θ
− k

∂2qa

∂σ2
a

=
k sin α

ρ0a
|∆a|

dP̃

dθ
, (15)

with σa = (x−xa)/δa. Here qa(σa, θ) is the dimensionless
component of velocity perpendicular to the equilibrium
magnetic field. We should point out here that although
nonlinearity and dispersion have been considered when
deriving the dynamics of the Alfvén resonance, the gov-
erning equation remains linear regardless of the degree of
nonlinearity (for details see Clack et al. [22]).

When studying resonant MHD waves, we are generally
not interested in the solution inside the dissipative layer
and can consider the dissipative layer as a surface of dis-
continuity. Instead, we solve the system (5) and match
the solutions at the boundaries of the discontinuity using
connection formulae. These connection formulae deter-
mine the jumps in u and P across the dissipative layer. In
the context of solar plasmas, they were first introduced by
Sakurai et al.(author?) [9]. It was shown by Clack and
Ballai(author?) [21] (in complete agreement with Rud-
erman et al.(author?) [14] and Ballai et al.(author?)
[15]) that the first connection formula is [P ] = 0, where
the square brackets denote the jump across the dissipa-
tive layer. It can also be shown, in a similar manner, that
the same jump condition exists for the Alfvén resonance.
The second connection formula for slow resonance can
only be written in implicit form, i.e.

[uc] = −
V

k cos2 α
P

∫ ∞

−∞

∂qc

∂θ
dσ, (16)

where we use the Cauchy principal value of the integral
because the integral is divergent at infinity. As a result
we must solve Eqs. (5) and (10) along with the boundary
conditions, [P ] = 0 and Eq. (16). In an attempt to fol-
low the same procedure utilized for finding solutions at
the slow resonance we can write the jump in the normal
component of velocity for the Alfvén resonance in an im-
plicit form. For the sake of brevity, we do not show the
derivation here, but it follows the procedure to find the
jump in the normal component of velocity completed by
Clack and Ballai(author?) [21]. This jump is given by

[ua] =
V sin α

k
P

∫ ∞

−∞

∂qa

∂θ
dσ. (17)

Finally, we should note some critical assumption we
make to allow analytical progress. From the very begin-
ning we must assume that the nonlinearity parameter is

small so that regular perturbation theory can be applied
at the slow resonance. We also assume that the inho-
mogeneous region is thin in comparison with the wave-
length of the impinging wave, i.e. kx0 ≪ 1. Ruder-
man(author?) [27] investigated the absorption of sound
waves at the slow dissipative layer in the limit of strong
nonlinearity. In his analysis nonlinearity dominated dis-
sipation in the resonant layer which embraces the dis-
sipative layer. He concluded that nonlinearity decreases
absorption in the long wavelength approximation, but in-
creases it at intermediate values of kx0, however, the in-
crease is never more than 20%. To the best of our knowl-
edge, at present, we cannot solve the governing equation
(10) in the limit of strong nonlinearity due to the nonlin-
ear dispersive term, therefore we restrict our analysis to
the weak nonlinear limit. We mention that no such as-
sumptions are needed for studying the Alfvén dissipative
layer since the governing equation (15) is linear.

III. SOLUTIONS OUTSIDE THE DISSIPATIVE

LAYERS

In what follows we derive a solution for the system
(5) in Regions I, II and III. In Region II we only find
the solution outside the dissipative layers. Section IV is
devoted to finding a solution to Eq. (10) inside the slow
dissipative layer and Section V is used to find a solution
to Eq. (15) inside the Alfvén dissipative layer. Outside
the dissipative layers, the solutions take identical forms.

A. Region I

The solution of Eq. (5) in Region I is given in the form
of an incoming and outgoing fast wave of the form

P = ǫ {pe cos [k (θ + κex)] + A cos [k (θ − κex)]} , (18)

u = ǫ
κeV {pe cos [k (θ + κex)] − A cos [k (θ − κex)]}

ρe (V 2 − v2
Ae cos2 α)

,

(19)

where ǫ ≪ 1 is the dimensionless amplitude of perturba-
tion far from the dissipative layer. The frequency of the
incoming wave is given by Eq. (4) and must lie within
the slow or Alfvén continuum depending on which dissi-
pative layer we are studying. The first term in Eqs. (18)
and (19) describes the incoming wave, while the second
term describes the outgoing wave which will be obtained
in Section IV for slow dissipative layers and in Section V
for Alfvén dissipative layers.
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B. Region II

In Region II, the equation for the total pressure, P , is
obtained by eliminating u from the system (5),

F
∂

∂x

[
1

ρ0 (V 2 − v2
A cos2 α)

∂P

∂x

]
=

∂2P

∂θ2
. (20)

Since we have assumed kx0 ≪ 1, the ratio of the right-
hand side and the left-hand side is of the order of k2x2

0.
It follows that

∂P

∂x
= ρ0

(
V 2 − v2

A cos2 α
)
f(θ) + O(k2x2

0), (21)

where the function f(θ) is determined by the second
equation of (5) and the boundary conditions at x = 0.
Equation (21) yields

P = P̃ (θ) + f(θ)

∫ x

0

ρ0

[
V 2 − v2

A cos2 α
]
dx + O(k2x2

0).

(22)

The function P̃ (θ) has to be determined by the bound-
ary conditions at x = 0. It can be shown that, because

[P ] = 0, the functions f(θ) and P̃ (θ) take the same val-
ues throughout Region II. Noting that the second term
in Eq. (22) is of the order of kx0 we can express P in a
simplified form

P = P̃ (θ) + (kx0)P ′(x, θ) + O(k2x2
0). (23)

C. Region III

To derive the governing equation for Region III we
eliminate the normal component of the velocity from the
system (5) to arrive at

∂2P

∂x2
+ κ2

i

∂2P

∂θ2
= 0, (24)

where κ2
i is defined as

κ2
i = −

V 4 − V 2
(
c2
Si + v2

Ai

)
+ c2

Siv
2
Ai cos2 α

(c2
Si + v2

Ai) (V 2 − c2
Ti cos2 α)

. (25)

Since, for slow dissipative layers, V < cTi cosα, it follows
that κ2

i > 0. It also follows that for Alfvén dissipative
layers κ2

i > 0 because V > cTi cosα > vAe cosα. There-
fore, Eq. (24) is an elliptical differential equation and
the wave motion is evanescent in Region III. In reality,
there could be wave leakage. The existence of wave leak-
age depends on the profile of the slow and Alfvén speeds
in the inhomogeneous region (Region II). For simplicity,
we have assumed that the slow and Alfvén resonances
take place at a single location (obviously different for the
two resonances), which means the profiles of the slow and
Alfvén speeds are monotonically increasing inside Region
II. Should we have a more complex model, the possibility
of wave leakage would need to be taken into account.

IV. WEAK NONLINEAR SOLUTION INSIDE

THE SLOW DISSIPATIVE LAYER

Since we are not able to solve the governing equation
(10) inside the slow dissipative layer analytically, we con-
sider the limit of weak nonlinearity (N2 ≪ 1). In ac-
cordance with this assumption we rewrite the governing
equation (10) and the jump condition (16) as

σ
∂qc

∂θ
+ ǫ−1ζ

(
Λ

Ψ

)
qc

∂qc

∂θ
− ǫ−1ζ

∂qc

∂σ

∂qc

∂θ

− k−1 ∂2qc

∂θ2
= −

V 4

ρ0cv4
Ac|∆c|x0

dPc

dθ
, (26)

[uc] = −
V x0

cos2 α
P

∫ ∞

−∞

∂qc

∂θ
dσ, (27)

where

qc =
qc

kx0
, ζ =

kx0D
2
dΨ

R4
, D2

d = ǫR4 = R2N2. (28)

Note that ζ is of the order of ǫR2, the ratio (Λ/Ψ) is of
the order of unity and qc is of the order of ǫ. In what
follows we drop the bar notation and for the rest of this
section we drop the subscript “c” on the dimensionless
variable q.

We proceed by using a regular perturbation method
and look for solutions in the form

f = ǫ

∞∑

n=1

ζn−1fn, (29)

where f represents any of the quantities P , u and q.

A. First order approximation

In the first order approximation, from Eq. (26), we
obtain

σ
∂q1

∂θ
− k−1 ∂2q1

∂θ2
= −

V 4

ρ0cv4
Ac|∆|x0

dP1c

dθ
. (30)

Since the total pressure, P , is continuous throughout the
dissipative layer and is periodical with respect to θ, we
look for a solution in the form g1 = ℜ(ĝ1e

ikθ), where g1

represents P1, u1 and q1 and ℜ indicates the real part of
a quantity.

In Region I the solutions for the pressure and velocity
exactly recover the results found in linear theory, i.e.

P̂1 = pee
ikκex + A1e

−ikκex, (31)

û1 =
κeV

(
pee

ikκex − A1e
−ikκex

)

ρe (V 2 − v2
Ae cos2 α)

, (32)

where A1 (and subsequent values of Ai) is the amplitude
of the outgoing wave. The first terms of the right-hand
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side of P̂1 and û1 represent the incoming wave, while
the second terms are the outgoing (reflected) wave. The
continuity of the total pressure perturbation at x = 0
and x = x0 in combination with Eq. (23) yields P̂1, in
Region II, as

P̂1 = pe + A1 + (kx0)ĥ1, (33)

where ĥn = ĥn(x) = P̂ ′
n(x) − P̂ ′

n(0), n ≥ 1. The so-
lution in Region III is obtained by using Eqs. (5), (24)
and (33) with the continuity conditions at x = x0. The
solution takes the form

P̂1 =
{
pe + A1 + (kx0)ĥ1

}
e−kκi(x−x0), (34)

û1 =
iκiV

{
pe + A1 + (kx0)ĥ1

}

ρi (V 2 − v2
Ai cos2 α)

e−kκi(x−x0). (35)

Utilizing the fact that û1 is continuous at x = 0 and
x = x0, and employing Eqs. (5) and (33) we find that
the jump in the normal component of velocity across the
dissipative layer is

[û1] =
iκiV (pe + A1)

ρi (V 2 − v2
Ai cos2 α)

−
κeV (pe − A1)

ρe (V 2 − v2
Ae cos2 α)

− ikV (pe + A1)P

∫ x0

0

F−1(x) dx

− ikV (kx0)P

∫ x0

0

ĥ1(x)

F (x)
dx, (36)

where the expression of F (x) is given by Eq. (6).
Solving Eq. (30) reveals q̂1 to be

q̂1 = −
V 4 (pe + A1) {1 + O(kx0)}

ρ0cv2
Ac

|∆|x0 (σ − i)
. (37)

Substitution of this result into Eq. (27) leads to another
definition of the jump in the normal component of veloc-
ity across the dissipative layer, namely,

[û1] =
−πkV 5 (pe + A1) {1 + O(kx0)}

ρ0cv4
Ac|∆| cos2 α

. (38)

Comparing Eqs. (36) and (38) we obtain that

A1 = −pe
τ − µ + iυ

τ + µ + iυ
+ O(k2x2

0), (39)

where

τ =
πkV 5

ρ0cv4
Ac|∆| cos2 α

, µ =
κeV

ρe (V 2 − v2
Ae cos2 α)

υ =
κiV

ρi (V 2 − v2
Ai cos2 α)

− kV P

∫ x0

0

F−1(x) dx. (40)

When deriving Eq. (39) we have employed the estimate

that kP
∫ x0

0
ĥn(x)/F (x) dx = O(kx0). The quantity A1

is a complex value. This means that the outgoing (re-
flected) wave has a phase alteration compared with the

incoming wave. The true amplitude of the outgoing wave

is given by Ã1 = (A2
1(r)+A2

1(im))
1/2 (where the subscripts

“r” and “im” mean the real and imaginary parts, respec-
tively). The Fourier analysis allows A1 to be complex. In
general, a complex value of An means the true amplitude
of the outgoing harmonic is defined as above and a phase
of the outgoing wave is shifted by tan−1(A2

n(im)/A
2
n(r)).

This definition of An applies to all subsequent orders of
approximation.

In Ruderman et al. [17] and Ballai et al. [18] a similar
procedure was carried out. Our results are similar with
theirs if we consider Be = 0 and α = 0. This conclusion
is not surprising because the first order approximation
with respect to the nonlinearity parameter coincides with
linear theory. In addition, dispersion due to the Hall
effect at the slow resonance does not alter linear theory
either since dispersion effects appear as a nonlinear term
in the governing equation.

B. Second order approximation

Nonlinear effects start to be important from the second
order approximation onwards, but they are always due to
the nonlinear combination of lower order harmonics. In
this order of approximation Eq. (26) is reduced to

σ
∂q2

∂θ
− k−1 ∂2q2

∂θ2
= −

V 4

ρ0cv4
Ac|∆|x0

dP2c

dθ

− q1
∂q1

∂θ
+

∂q1

∂σ

∂q1

∂θ
. (41)

Taking advantage of the form of the first order approx-
imation terms enables us to rewrite the second term on
the right-hand side of this equation as

q1
∂q1

∂θ
= ℜ

(
ik

2
q̂2
1e

2ikθ

)
. (42)

Since the nonlinear terms are proportional to ℜ
(
e2ikθ

)

it is appropriate to seek a solution of the form g2 =
ℜ

(
ĝ2e

2ikθ
)
, where g2 represents P2, u2 and q2.

Using the same techniques as in the first order ap-
proximation, it is straightforward to find the jump in the
normal component of velocity in Region II

[û2] =
iκiV A2

ρi (V 2 − v2
Ai cos2 α)

+
κeV A2

ρe (V 2 − v2
Ae cos2 α)

− 2ikV A2P

∫ x0

0

F−1(x) dx

− 2ikV (kx0)P

∫ x0

0

ĥ2(x)

F (x)
dx. (43)

Using Eqs. (37) and (42) we can solve Eq.(41) to ob-
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tain

q̂2 = −
1

σ − 2i

[
V 4A2

ρ0cv4
Ac|∆|x0

+
V 8 (pe + A1)

2
(1 + 4Ω2)

4ρ2
0cv

8
Ac|∆|2x2

0(σ − i)2

]
, (44)

where Ω2 = 1/(σ − i) is the additional factor due to
the nonlinear dispersion (as are all subsequent values of
Ωi, i > 2). We substitute the expression for q̂2 into Eq.
(27) to find

[û2] = −
2πkV 5A2

ρ0cv4
Ac|∆| cos2 α

, (45)

where the terms of the order of k2x2
0 are not indicated.

To calculate A2 we compare the jump in the normal com-
ponent of velocity across the dissipative layer defined by
Eqs. (43) and (45). This leads to A2 = O(k2x2

0). This
result implies that all quantities in the second order ap-
proximation are zero outside the dissipative layer up to
an accuracy of O(kx0). With this restriction the outgoing
wave remains monochromatic in the second order approx-
imation. This result coincides with the results of Rud-
erman et al.(author?) [17], Ballai et al.(author?) [18],
Erdélyi et al.(author?) [20] and Ruderman(author?)
[27] (this is especially surprising because in this paper
nonlinearity is strong).

C. Third order approximation

The third order approximation with respect to ζ is
governed by

σ
∂q3

∂θ
− k−1 ∂2q3

∂θ2
= −

V 4

ρ0cv4
Ac|∆|x0

dP3c

dθ

−
∂ (q1q2)

∂θ
+

∂q1

∂σ

∂q2

∂θ
+

∂q2

∂σ

∂q1

∂θ
. (46)

Taking into account the form of the solutions in the pre-
vious two orders of approximation we can rewrite the
second term on the right-hand side of Eq. (46) as

∂ (q1q2)

∂θ
=

k

2
ℜ

(
3iq̂1q̂2e

3ikθ + iq̂∗1 q̂2e
ikθ

)
, (47)

where qn = ℜ
(
q̂neinkθ + q̂∗ne−inkθ

)
and the asterisk de-

notes a complex conjugate. This result inspires us to
seek solutions in the third order approximation in the
form g3 = ℜ

(
ĝ31e

ikθ + ĝ33e
3ikθ

)
, where g3 represents

P3, u3 and q3. Considering the length of this paper we
only calculate the ĝ31 quantities, as it can be shown that
A33 = O(k2x2

0).
In a similar manner as the first and second order ap-

proximations, we find that the jump in the normal com-

ponent of velocity across the slow dissipative layer to be

[û31] =
iκiV A31

ρi (V 2 − v2
Ai cos2 α)

+
κeV A31

ρe (V 2 − v2
Ae cos2 α)

− ikV A31P

∫ x0

0

F−1(x) dx

− ikV (kx0)P

∫ x0

0

ĥ31(x)

F (x)
dx, (48)

To find q̂31 we must exploit Eqs. (37), (44) and (47)
to solve Eq. (46). The calculation is analogous to the
first and second order approximation calculations and we
arrive at the solution

q̂31 = −
V 4A31

ρ0cv4
Ac|∆|x0 (σ − i)

−
V 12 (pe + A1) |pe + A1|

2 (1 + 2Ω31)

8ρ3
0cv

12
Ac|∆|3x3

0 (σ − i)
2
(σ − 2i) (σ2 + 1)

, (49)

where Ω31 and is given by

Ω31 = Ω2
σ3 − (8 + 7i)σ2 − (11 + 12i)σ − (44 − 5i)

(σ − 2i) (σ2 + 1)
,

We substitute this expression for q̂31 to find a second def-
inition for the jump in the normal component of velocity
across the slow dissipative layer (up to an accuracy of
kx0)

[û31] = −
πkV 5A31

ρ0cv4
Ac|∆| cos2 α

+
πkV 13 (pe + A1) |pe + A1|

2 (27 − 8i)

96ρ3
0cv

12
Ac|∆|3x2

0 cos2 α
, (50)

Similar to the first two orders of approximation, we can
compare Eqs. (48) with (50) to find the coefficients A31

A31 =
p3

eτ
3µ3 (27 − 8i) cos4 α

12π2V 2k2x2
0 (µ + iυ)2 (µ2 + υ2)

, (51)

When calculating A31 we have used the estimates τ =
O(kx0) and kV P

∫ x0

0 F−1(x) dx = O(kx0), and retain
only the terms of lowest order with respect to kx0, as
we have assumed that kx0 ≪ 1. Equation (51) illus-
trates that with an accuracy of up to O(kx0) the outgo-
ing (reflected) wave remains monochromatic in the third
order approximation. Nevertheless, there is a slight al-
teration to the amplitude of the fundamental harmonic
of the outgoing wave from A1 to A1 + ζ2A31. These
results coincide, qualitatively, with the findings by Rud-
erman et al.(author?) [17], Ballai et al.(author?) [18]
and Erdélyi et al.(author?) [20], however, A31 is quan-
titatively larger than that of previous studies and has an
imaginary component. This implies that the amplitude
of the wave is greater and the phase of the correction
is changed when compared with those studies. The ex-
pression for A31, Eq. (51), is different to the ones they
obtained because of the inclusion of dispersion through
the Hall current.
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D. Higher order approximations

In the fourth order of approximation the outgoing (re-
flected) wave becomes non-monochromatic. This means
the energy from this order of approximation no longer
contribute to the fundamental harmonic, but to a higher
one. For full details of the calculation please refer to the
Appendix.

Continuing calculations to even higher order approxi-
mations it can be shown that the higher order harmon-
ics (third, fourth, etc.) are generated in the outgoing
(reflected) fast wave. The pressure perturbation of the
outgoing wave can be written as

P ′ = ǫℜ

{
∞∑

n=1

Aneink(θ−κex)

}
. (52)

The second harmonic only appears in the outgoing wave
in the fourth order approximation, whereas, higher har-
monics appear in higher orders of approximation. This
implies that the estimate An = O(ζ3), n ≥ 2 is valid.

V. SOLUTION INSIDE THE ALFVÉN

DISSIPATIVE LAYER

We can find the jump in the normal component of ve-
locity at the Alfvén resonance explicitly, however, in an
attempt to follow the procedure in the last section (and
to verify the theory), we proceed to use the implicit form
of the jump conditions. As the governing equation (15)
is linear we only need to calculate one order of approxi-
mation.

Although the Alfvén resonant position is at x = xa,
compared with x = xc for the slow resonant position,
we can use some of the same formulae as in the previ-
ous section. First, we look for a solution in the form of
g1 = ℜ(ĝ1e

ikθ). In Region I, we use Eqs. (31) and (32) to
represent the pressure and normal component of velocity
perturbations, respectively. For Region II, due to the first
connection formula, [P ] = 0, we can write the pressure
perturbation as Eq. (33). We also find that Eqs. (34)
and (35) can be used to represent the pressure and nor-
mal component of velocity perturbations, respectively, in
Region III. The fact we can employ the same equations
(as in slow resonance) in the three regions leads to one
of the definitions of the jump in the normal component
of velocity over the Alfvén dissipative layer being defined
as Eq. (36). It should come as no surprise that this
definition of the jump across the Alfvén dissipative layer
coincides with the jump across the slow dissipative layer
in the first order approximation. We are using linear the-
ory to obtain both expressions and are not looking inside
the, respective, dissipative layers’, so the forms should be
identical.

To find q̂a, so that we find the other definition of the
jump in ua, requires a different approach to the one uti-
lized in the section before. After Fourier analyzing Eq.

(15), we are left with

iσq̂a −
d2q̂a

dσ2
a

=
ik sin α

ρ0a|∆a|
Pa. (53)

To solve Eq. (53) we introduce the Fourier transform
with respect to σ:

F [f(σ)] =

∫ ∞

−∞

f(σ)e−iσr dσ. (54)

Then from Eq. (53) we have

dF [q̂a]

dr
− r2

F [q̂a] = −
2πik sinα (pe + A)

ρ0a|∆a|
δ(r), (55)

where δ(r) is the delta-function. We find that the solu-
tion to Eq. (55) that is bounded for |r| → ∞ is

F [q̂a] =
2iπk sin α(pe + A)

ρ0a|∆a|
H(−r)er3/3. (56)

Here H(r) denotes the Heavyside function. It was shown
by Ruderman and Goossens(author?) [17] that

P

∫ ∞

−∞

f(σ) dσ =
1

2

(
lim

r→+0
F [f ] + lim

r→−0
F [f ]

)
. (57)

With the aid of Eqs. (17), (56) and (57) we find that

[ûa] = −
πkV (pe + A) sin2 α

ρ0a|∆a|
. (58)

Comparing Eqs. (36) and (58) we derive that

A = −pe
τa − µ + iυ

τa + µ + iυ
+ O(k2x2

0), (59)

where τa = πkV sin2 α/(ρ0a|∆a|), and µ and υ have their
forms given by Eq. (40). However, their values are dif-
ferent for the two resonances.

VI. COEFFICIENT OF WAVE ABSORPTION

The coefficient of wave absorption is defined as Γ =
(Πin − Πout)/Πin, where Πin and Πout are the normal
components of the energy fluxes, averaged over a period,
of the incoming and outgoing waves, respectively. It is
straightforward to obtain that

Γ = 1 −
1

p2
e

∞∑

n=1

|An|
2 ≈ ΓL + ζ2ΓND, (60)

where ΓL is the linear coefficient of wave absorption and
ΓND is the nonlinear and dispersive correction. Note that
ΓND is multiplied by the small factor ζ2 which means that
this term will provide small corrections to linear results.
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Carrying out calculations we find at the slow reso-
nance, in agreement with linear theory, that

ΓL =
4τµ

µ2 + υ2
+ O(k2x2

0). (61)

The coefficient ΓND is defined as ΓND =
−(2/p2

e)ℜ{A∗
1A31}, which can be rewritten using

Eqs. (39) and (51) as

ΓND = −
27p2

eτ
3µ3 cos4 α

6π2V 2k2x2
0 (µ2 + υ2)2

+ O(k2x2
0). (62)

Both ΓL and ΓND are of the order of kx0. This result
is qualitatively the same as Ruderman et al.(author?)
[17] and Ballai et al.(author?) [18] results, however, the
nonlinear correction is different. In fact, it is 270% times
larger due to the Hall current having a dominant effect
around the resonance. Moreover, the dispersion in the
slow dissipative layer causes a further reduction in the
coefficient of energy absorption, in comparison to the
nonlinear regime alone.

At the Alfvén resonance dynamics can be described
within the linear framework. Hence, using Eqs. (59) and
(60) we obtain that

Γa =
4τaµ

(τa + µ)2 + υ2
. (63)

Numerical verification of these results requires much
more work than would first appear, and as such our next
paper is to concentrates on this and further numerical
analysis.

VII. CONCLUSIONS

In the present paper we have investigated (i) the
effect of nonlinearity and dispersion on the interac-
tion of fast magnetoacoustic (FMA) waves with a one-
dimensional inhomogeneous magnetized plasma with
strongly anisotropic transport processes in the slow dis-
sipative layer (ii) the interaction of FMA waves with
Alfvén dissipative layers. The study is based on the non-
linear theory of slow resonance in strongly anisotropic
and dispersive plasmas developed by Clack and Bal-
lai(author?) [21] and the theory of Alfvén resonance
developed by Clack et al.(author?) [22].

We have assumed that (i) the thickness of the slab con-
taining the inhomogeneous plasma (Region II) is small
in comparison with the wavelength of the incoming fast
wave (i.e. kx0 ≪ 1); and (ii) the nonlinearity in the dis-
sipative layer is weak - the nonlinear term in the equa-
tion describing the plasma motion in the slow dissipative
layer can be considered as a perturbation and nonlinear-
ity gives only a correction to the linear results.

Applying a regular perturbation method, analytical so-
lutions in the slow dissipative layer are obtained in the
form of power expansions with respect to the nonlinearity

parameter ζ. Our main results are the following: Nonlin-
earity in the dissipative layer generates higher harmonic
contributions to the outgoing (reflected) wave in addi-
tion to the fundamental one. The dispersion does not
alter this, however, the phase and amplitude of some of
the higher harmonics are different from the standard non-
linear counterpart (see discussions before). Dispersion in
the dissipative layer further decreases the coefficient of
the wave energy absorption. The factor of alteration to
the nonlinear correction of the coefficient of wave ab-
sorption due to dispersion is 270%. Remember, however,
that the nonlinear correction is multiplied by the small
parameter ζ2, so the effect to the overall coefficient of
wave energy absorption is still small.

Calculating the coefficient of wave absorption at the
Alfvén resonance confirms the linear theory of the past
and verifies the approach taken to be correct. As our
physical set-up of the problem (for the Alfvén resonance)
matches the typical conditions found in the solar corona,
these results can be applied to it. The equilibrium state
of the problem (for the slow resonance) can match con-
ditions found in the upper chromosphere, where FMA
waves may interact with slow dissipative layers, and if
the reduction in the coefficient of wave energy absorp-
tion persists to the strong nonlinear case (as with the
long wavelength approximation found by Ruderman [27])
dispersion may have further implications to the resonant
absorption in the solar atmosphere.

In a forthcoming paper, we shall theoretically and nu-
merically investigate coupled resonances, which builds
from the work in the present paper to obtain a more
realistic model for a solar physical description. In the
same paper we will numerically analyze the absorption
of fast waves at the Alfvén resonance as a possible sce-
nario of the interaction of global fast waves (modelling
EIT waves) and coronal loops.
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APPENDIX: DETAILS FOR CALCULATION OF

FOURTH ORDER APPROXIMATION

In the fourth order approximation Eq. (26) gives

σ
∂q4

∂θ
− k−1 ∂2q4

∂θ2
= −

V 4

ρ0cv4
Ac|∆|x0

dP4c

dθ
+

∂q2

∂σ

∂q2

∂θ

−
∂

∂θ

(
q1q3 +

1

2
q2
2

)
+

∂q1

∂σ

∂q3

∂θ
+

∂q3

∂σ

∂q1

∂θ
. (A1)

We can rewrite the third term on the right-hand side of
Eq. (A1) using our knowledge about the first three orders
of approximation, so

∂

∂θ

(
q1q3 +

1

2
q2
2

)
= kℜ

{
i (q̂1q̂31 + q̂∗1 q̂33) e2ikθ

+i
(
2q̂1q̂33 + q̂2

2

)
e4ikθ

}
. (A2)

This equation contains terms proportional to e2ikθ and
e4ikθ, so we can anticipate the solution to Eq. (A1) to
be of the form g4 = ℜ

(
ĝ42e

2ikθ + ĝ44e
4ikθ

)
, where g4

represents P4, u4 and q4. We calculate the fourth order
approximation to demonstrate that nonlinearity and dis-
persion in the dissipative layer generates overtones in the
outgoing (reflected) fast wave. For brevity, we shall only
derive the terms proportional to e2ikθ , but for complete-
ness we note that it can be shown that terms proportional
to e4ikθ are only present in the solution inside the dissi-
pative layer.

Using the continuity conditions at x = 0 and x = x0

we find the jump in the normal component of velocity
across the dissipative layer to be

[û42] =
iκiV A42

ρi (V 2 − v2
Ai cos2 α)

+
κeV A42

ρe (V 2 − v2
Ae cos2 α)

− 2ikV A2P

∫ x0

0

F−1(x) dx

− 2ikV (kx0)P

∫ x0

0

ĥ2(x)

F (x)
dx. (A4)

It is straightforward, but longwinded, to derive q̂42, so
we skip all intermediate steps and give the result

q̂42 =
−1

σ − 2i

{
V 4A42

ρ0cv4
Ac|∆|x0

+
V 8 (pe + A1)A31 (1 + Ω2)

2ρ0cv8
Ac|∆|2x2

0(σ − i)2

+
V 16 (pe + A1)

2
|pe + A1|

2 (12 − Ω42)

96ρ4
0cv

16
Ac|∆|4x4

0(σ − i)3(σ − 3i) (σ2 + 1)

}
, (A5)

with Ω42 = f(σ), where f(σ) → 0 as σ → ∞, is the
contribution due to the Hall effect. As it is not essential
for forthcoming calculations, its exact form is not given
here. The substitution of q̂42 into Eq. (27) yields

[û42] = −
2πkV 5A42

ρ0cv4
Ac|∆| cos2 α

+ 0.082×
πkV 17(pe + A1)

2|pe + A1|
2

ρ4
0cv

16
Ac|∆|4x3

0 cos2 α
, (A6)

Comparing Eqs. (A4) and (A6) we obtain that

A42 = 1.279 ×
p4

eτ
4µ4 cos6 α

π3V 3k3x3
0 (µ + iυ)

3
(µ2 + υ2)

. (A7)

Here we have used the same estimations that were uti-
lized for calculating A31 in the third order approximation
and retain only the largest order terms with respect to
kx0. It is clear from this result that the outgoing wave
becomes non-monochromatic in the fourth order approx-
imation. We can also observe that the second harmonic
appears in addition to the fundamental mode.

This result parallels the results obtained by Ruder-
man et al.(author?) [17] and Ballai et al.(author?) [18].
However, Eq. (A7) shows that the phase is inverted and
the amplitude of the second harmonic is approximately
30 times greater than theirs due to the presence of the
Hall effect. Remember, though, that this amplitude is
multiplied by a very small term, ζ3, which means the
overall correction is very small.
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