814 research outputs found

    Solving the mystery of booming sand dunes

    Get PDF
    Desert booming can be heard after a natural slumping event or during a sand avalanche generated by humans sliding down the slip face of a large dune. The sound is remarkable because it is composed of one dominant audible frequency (70 to 105 Hz) plus several higher harmonics. This study challenges earlier reports that the dunes’ frequency is a function of average grain size by demonstrating through extensive field measurements that the booming frequency results from a natural waveguide associated with the dune. The booming frequency is fixed by the depth of the surficial layer of dry loose sand that is sandwiched between two regions of higher compressional body wave velocity. This letter presents measurements of the booming frequencies, compressional wave velocities, depth of surficial layer, along with an analytical prediction of the frequency based on constructive interference of propagating waves generated by avalanching along the dune surface

    Reply to comment by B. Andreotti et al. on "Solving the mystery of booming sand dunes"

    Get PDF
    This reply addresses three main issues raised in the comment of Andreotti et al. [2008]. First, the turning of ray paths in a granular material does not preclude the propagation of body waves and the resonance condition described by Vriend et al. [2007]. The waveguide model still holds in the dune for the observed velocities, even with a velocity increase with depth as implied by Andreotti et al. [2008]. Secondly, the method of initiation of spontaneous avalanching does not influence the booming frequency. The frequency is independent of the source once sustained booming starts; it depends on the subsurface structure of the dune. Thirdly, if all data points from Vriend et al. [2007] are included in the analysis (and not an average or selection), no correlation is observed between the sustained booming frequency and average particle diameter

    Preparation of pyridine-stretched 2’-deoxyhypoxanthosine phosphoramidite

    Get PDF
    Pyridine-stretched 2!-deoxyhypoxanthosine (strH) phosphoramidite was prepared in eight steps from Hoffer’s sugar (2!-deoxy-3,5-di-O-(p-toluoyl)-α-D-erythro-pentofuranosyl chloride). Improved synthesis of the Hoffer sugar was achieved without need for distillation or chromatographic separation of intermediates, or use of gaseous HCl. Conditions were optimised to provide a key nitrile intermediate for the preparation of strH whereby the cesium salt of 4(5)-nitroimidazole was glycosylated using Hoffer’s sugar. The nitrile intermediate was also used to prepare pyridine-stretched 2!-deoxyadenosine (strA) and pyridine-stretched 2!-deoxy-diaminopurine (strD). Preliminary studies indicate that strH forms a stronger, size-expanded base pair with adenine compared with the Watson-Crick thymine-adenine base pair

    The role of dredge-up in double white dwarf mergers

    Get PDF
    We present the results of an investigation of the dredge-up and mixing during the merger of two white dwarfs with different chemical compositions by conducting hydrodynamic simulations of binary mergers for three representative mass ratios. In all the simulations, the total mass of the two white dwarfs is ≲1.0 M⊙\lesssim1.0~{\rm M_\odot}. Mergers involving a CO and a He white dwarf have been suggested as a possible formation channel for R Coronae Borealis type stars, and we are interested in testing if such mergers lead to conditions and outcomes in agreement with observations. Even if the conditions during the merger and subsequent nucleosynthesis favor the production of 18O^{18}{\mathrm O}, the merger must avoid dredging up large amounts of 16O^{16}{\mathrm O}, or else it will be difficult to produce sufficient 18O^{18}{\mathrm O} to explain the oxygen ratio observed to be of order unity. We performed a total of 9 simulations using two different grid-based hydrodynamics codes using fixed and adaptive meshes, and one smooth particle hydrodynamics (SPH) code. We find that in most of the simulations, >10−2 M⊙>10^{-2}~{\rm M_\odot} of 16O^{16}{\mathrm O} is indeed dredged up during the merger. However, in SPH simulations where the accretor is a hybrid He/CO white dwarf with a ∼0.1 M⊙\sim 0.1~{\rm M_\odot} layer of helium on top, we find that no 16O^{16}{\mathrm O} is being dredged up, while in the q=0.8q=0.8 simulation <10−4 M⊙<10^{-4}~{\rm M_\odot} of 16O^{16}{\mathrm O} has been brought up, making a WD binary consisting of a hybrid CO/He WD and a companion He WD an excellent candidate for the progenitor of RCB stars.Comment: Accepted for publication in Ap

    Realistic assumptions about spatial locations and clustering of premises matter for models of foot-and-mouth disease spread in the United States

    Get PDF
    Spatially explicit livestock disease models require demographic data for individual farms or premises. In the U.S., demographic data are only available aggregated at county or coarser scales, so disease models must rely on assumptions about how individual premises are distributed within counties. Here, we addressed the importance of realistic assumptions for this purpose. We compared modeling of foot and mouth disease (FMD) outbreaks using simple randomization of locations to premises configurations predicted by the Farm Location and Agricultural Production Simulator (FLAPS), which infers location based on features such as topography, land-cover, climate, and roads. We focused on three premises-level Susceptible-Exposed-Infectious-Removed models available from the literature, all using the same kernel approach but with different parameterizations and functional forms. By computing the basic reproductive number of the infection (R0) for both FLAPS and randomized configurations, we investigated how spatial locations and clustering of premises affects outbreak predictions. Further, we performed stochastic simulations to evaluate if identified differences were consistent for later stages of an outbreak. Using Ripley's K to quantify clustering, we found that FLAPS configurations were substantially more clustered at the scales relevant for the implemented models, leading to a higher frequency of nearby premises compared to randomized configurations. As a result, R0 was typically higher in FLAPS configurations, and the simulation study corroborated the pattern for later stages of outbreaks. Further, both R0 and simulations exhibited substantial spatial heterogeneity in terms of differences between configurations. Thus, using realistic assumptions when de-aggregating locations based on available data can have a pronounced effect on epidemiological predictions, affecting if, where, and to what extent FMD may invade the population. We conclude that methods such as FLAPS should be preferred over randomization approaches

    NuGrid: Toward High Precision Double-Degenerate Merger Simulations with SPH in 3D

    Get PDF
    We present preliminary results from recent high-resolution double-degenerate merger simulations with the Smooth Particle Hydrodynamics (SPH) technique. We put particular emphasis on verification and validation in our effort and show the importance of details in the initial condition setup for the final outcome of the simulation. We also stress the dynamical importance of including shocks in the simulations. These results represent a first step toward a suite of simulations that will shed light on the question whether double-degenerate mergers are a viable path toward type 1a supernovae. In future simulations, we will make use of the capabilities of the NuGrid collaboration in post-processing SPH particle trajectories with a complete nuclear network to follow the detailed nuclear reactions during the dynamic merger phase.Comment: To appear in the Conference Proceedings for the "10th Symposium on Nuclei in the Cosmos (NIC X)", July 27 - August 1 2008, Mackinack Island, Michigan, US

    A Comparison of Grid-based and SPH Binary Mass-transfer and Merger Simulations

    Get PDF
    There is currently a great amount of interest in the outcomes and astrophysical implications of mergers of double degenerate binaries. In a commonly adopted approximation, the components of such binaries are represented by polytropes with an index of n = 3/2. We present detailed comparisons of stellar mass-transfer and merger simulations of polytropic binaries that have been carried out using two very different numerical algorithms - a finite-volume grid code and a smoothed-particle hydrodynamics (SPH) code. We find that there is agreement in both the ultimate outcomes of the evolutions and the intermediate stages if the initial conditions for each code are chosen to match as closely as possible. We find that even with closely matching initial setups, the time it takes to reach a concordant evolution differs between the two codes because the initial depth of contact cannot be matched exactly. There is a general tendency for SPH to yield higher mass transfer rates and faster evolution to the final outcome. We also present comparisons of simulations calculated from two different energy equations: in one series, we assume a polytropic equation of state and in the other series an ideal gas equation of state. In the latter series of simulations, an atmosphere forms around the accretor, which can exchange angular momentum and cause a more rapid loss of orbital angular momentum. In the simulations presented here, the effect of the ideal equation of state is to de-stabilize the binary in both SPH and grid simulations, but the effect is more pronounced in the grid code

    High Resolution mid-Infrared Imaging of SN 1987A

    Full text link
    Using the Thermal-Region Camera and Spectrograph (T-ReCS) attached to the Gemini South 8m telescope, we have detected and resolved 10 micron emission at the position of the inner equatorial ring (ER) of supernova SN 1987A at day 6067. ``Hot spots'' similar to those found in the optical and near-IR are clearly present. The morphology of the 10 micron emission is globally similar to the morphology at other wavelengths from X-rays to radio. The observed mid-IR flux in the region of SN1987A is probably dominated by emission from dust in the ER. We have also detected the ER at 20 micron at a 4 sigma level. Assuming that thermal dust radiation is the origin of the mid-IR emission, we derive a dust temperature of 180^{+20}_{-10} K, and a dust mass of 1.- 8. 10^{-5} Mo for the ER. Our observations also show a weak detection of the central ejecta at 10 micron. We show that previous bolometric flux estimates (through day 2100) were not significantly contaminated by this newly discovered emission from the ER. If we assume that the energy input comes from radioactive decays only, our measurements together with the current theoretical models set a temperature of 90 leq T leq 100 K and a mass range of 10^{-4} - 2. 10^{-3} Mo for the dust in the ejecta. With such dust temperatures the estimated thermal emission is 9(+/-3) 10^{35} erg s^{-1} from the inner ring, and 1.5 (+/-0.5) 10^{36} erg s^{-1} from the ejecta. Finally, using SN 1987A as a template, we discuss the possible role of supernovae as major sources of dust in the Universe.Comment: aastex502, 14 pages, 4 figures; Accepted for publication in ApJ Content changed: new observations, Referee's comments and suggestion
    • …
    corecore