17 research outputs found

    Cosmic-Ray Positrons: Are There Primary Sources?

    Get PDF
    Cosmic rays at the Earth include a secondary component originating in collisions of primary particles with the diffuse interstellar gas. The secondary cosmic rays are relatively rare but carry important information on the Galactic propagation of the primary particles. The secondary component includes a small fraction of antimatter particles, positrons and antiprotons. In addition, positrons and antiprotons may also come from unusual sources and possibly provide insight into new physics. For instance, the annihilation of heavy supersymmetric dark matter particles within the Galactic halo could lead to positrons or antiprotons with distinctive energy signatures. With the High-Energy Antimatter Telescope (HEAT) balloon-borne instrument, we have measured the abundances of positrons and electrons at energies between 1 and 50 GeV. The data suggest that indeed a small additional antimatter component may be present that cannot be explained by a purely secondary production mechanism. Here we describe the signature of the effect and discuss its possible origin.Comment: 15 pages, Latex, epsfig and aasms4 macros required, to appear in Astroparticle Physics (1999

    Reprogramming the assembly of unmodified DNA with a small molecule

    Get PDF
    The ability of DNA to store and encode information arises from base pairing of the four-letter nucleobase code to form a double helix. Expanding this DNA ‘alphabet’ by synthetic incorporation of new bases can introduce new functionalities and enable the formation of novel nucleic acid structures. However, reprogramming the self-assembly of existing nucleobases presents an alternative route to expand the structural space and functionality of nucleic acids. Here we report the discovery that a small molecule, cyanuric acid, with three thymine-like faces reprogrammes the assembly of unmodified poly(adenine) (poly(A)) into stable, long and abundant fibres with a unique internal structure. Poly(A) DNA, RNA and peptide nucleic acid all form these assemblies. Our studies are consistent with the association of adenine and cyanuric acid units into a hexameric rosette, which brings together poly(A) triplexes with a subsequent cooperative polymerization. Fundamentally, this study shows that small hydrogen-bonding molecules can be used to induce the assembly of nucleic acids in water, which leads to new structures from inexpensive and readily available materials
    corecore