428 research outputs found
MINRES-QLP: a Krylov subspace method for indefinite or singular symmetric systems
CG, SYMMLQ, and MINRES are Krylov subspace methods for solving symmetric
systems of linear equations. When these methods are applied to an incompatible
system (that is, a singular symmetric least-squares problem), CG could break
down and SYMMLQ's solution could explode, while MINRES would give a
least-squares solution but not necessarily the minimum-length (pseudoinverse)
solution. This understanding motivates us to design a MINRES-like algorithm to
compute minimum-length solutions to singular symmetric systems.
MINRES uses QR factors of the tridiagonal matrix from the Lanczos process
(where R is upper-tridiagonal). MINRES-QLP uses a QLP decomposition (where
rotations on the right reduce R to lower-tridiagonal form). On ill-conditioned
systems (singular or not), MINRES-QLP can give more accurate solutions than
MINRES. We derive preconditioned MINRES-QLP, new stopping rules, and better
estimates of the solution and residual norms, the matrix norm, and the
condition number.Comment: 26 pages, 6 figure
Cytokines and depression in cancer patients and caregivers.
Objective:A better understanding of the biobehavioral mechanisms underlying depression in cancer is required to translate biomarker findings into clinical interventions. We tested for associations between cytokines and the somatic and psychological symptoms of depression in cancer patients and their healthy caregivers. Patients and methods:The GRID Hamilton Rating Scale for Depression (Ham-D) was administered to 61 cancer patients of mixed type and stage, 26 primary caregivers and 38 healthy controls. Concurrently, blood was drawn for multiplexed plasma assays of 15 cytokines. Multiple linear regression, adjusted for biobehavioral variables, identified cytokine associations with the psychological (Ham-Dep) and somatic (Ham-Som) subfactors of the Ham-D. Results:The Ham-Dep scores of cancer patients were similar to their caregivers, but their Ham-Som scores were significantly higher (twofold, p=0.016). Ham-Som was positively associated with IL-1ra (coefficient: 1.27, p≤0.001) in cancer patients, and negatively associated with IL-2 (coefficient: -0.68, p=0.018) in caregivers. Ham-Dep was negatively associated with IL-4 (coefficient: -0.67, p=0.004) in cancer patients and negatively associated with IL-17 (coefficient: -1.81, p=0.002) in caregivers. Conclusion:The differential severity of somatic symptoms of depression in cancer patients and caregivers and the unique cytokine associations identified with each group suggests the potential for targeted interventions based on phenomenology and biology. The clinical implication is that depressive symptoms in cancer patients can arise from biological stressors, which is an important message to help destigmatize the development of depression in cancer patients
Overusage of Mouse DH Gene Segment, DFL16.1, Is Strain-Dependent and Determined by cis-Acting Elements
The DJH structure is of particular importance for diversity in the immunoglobulin heavy
chain because it encodes most of CDR3. Here, we investigate mechanisms responsible for
generating the DJH structure. We found DFL16.1 was used at a high frequency in normal
and transformed pre-B cells (fetal liver > 50%, A-MuLV lines ≅ 25%). One DFL16.1JH1
structure was found repeatedly and was also present in DJH and VDJH databases,
suggesting this structure may be conserved in the primary repertoire. Genetic analysis
demonstrated that C57BL/6 mice use DFL16.1 in DJH structures more frequently than
BALB/c. Examination of individual alleles in (C57BL/6 BALB/c)F1 A-MuLV cell lines
revealed that the C57BL/6-derived allele used DFL16.1 twice as often as the BALB/c. This
result indicates that part of the mechanism ensuring overusage of DFL16.1 gene segments
is cis-acting
Homeodomain-Interacting Protein Kinase (HIPK)-1 Is Required for Splenic B Cell Homeostasis and Optimal T-Independent Type 2 Humoral Response
The homeodomain-interacting protein kinase (HIPK) family is comprised of four highly related serine/threonine kinases originally identified as co-repressors for various homeodomain-containing transcription factors. The HIPKs have been shown to be involved in growth regulation and apoptosis, with numerous studies highlighting HIPK regulation of the tumor suppressor p53. In this study, we have discovered a B cell homeostatic defect in HIPK1-deficient (HIPK1−/−) mice. Lymphopoietic populations within the thymus and bone marrow of HIPK1−/− mice appeared normal based upon FACS analysis; however, the spleen exhibited a reduced number of total B cells with a significant loss of transitional-1 and follicular B cell populations. Interestingly, the marginal zone B cell population was expanded in HIPK1−/− mice, yielding an increased frequency of these cells. HIPK1−/− B cells exhibited impaired cell division in response to B cell receptor cross-linking in vitro based upon thymidine incorporation or CFSE dilution; however, the addition of CD40L rescued HIPK1−/− proliferation to wild-type levels. Despite the expanded MZ B cell population in the HIPK1−/− mice, the T-independent type 2 humoral response was impaired. These data identify HIPK1 as a novel kinase required for optimal B cell function in mice
SARS-CoV-2 infection severity is linked to superior humoral immunity against the spike
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently causing a global pandemic. The antigen specificity of the antibody response mounted against this novel virus is not understood in detail. Here, we report that subjects with a more severe SARS-CoV-2 infection exhibit a larger antibody response against the spike and nucleocapsid protein and epitope spreading to subdominant viral antigens, such as open reading frame 8 and nonstructural proteins. Subjects with a greater antibody response mounted a larger memory B cell response against the spike, but not the nucleocapsid protein. Additionally, we revealed that antibodies against the spike are still capable of binding the D614G spike mutant and cross-react with the SARS-CoV-1 receptor binding domain. Together, this study reveals that subjects with a more severe SARS-CoV-2 infection exhibit a greater overall antibody response to the spike and nucleocapsid protein and a larger memory B cell response against the spike
Development of an Optimized Medium, Strain and High-Throughput Culturing Methods for Methylobacterium extorquens
Methylobacterium extorquens strains are the best-studied methylotrophic model system, and their metabolism of single carbon compounds has been studied for over 50 years. Here we develop a new system for high-throughput batch culture of M. extorquens in microtiter plates by jointly optimizing the properties of the organism, the growth media and the culturing system. After removing cellulose synthase genes in M. extorquens strains AM1 and PA1 to prevent biofilm formation, we found that currently available lab automation equipment, integrated and managed by open source software, makes possible reliable estimates of the exponential growth rate. Using this system, we developed an optimized growth medium for M. extorquens using response surface methodologies. We found that media that used EDTA as a metal chelator inhibited growth and led to inconsistent culture conditions. In contrast, the new medium we developed with a PIPES buffer and metals chelated by citrate allowed for fast and more consistent growth rates. This new Methylobacterium PIPES (‘MP’) medium was also robust to large deviations in its component ingredients which avoided batch effects from experiments that used media prepared at different times. MP medium allows for faster and more consistent growth than other media used for M. extorquens.Organismic and Evolutionary Biolog
Cytokine Signaling and Hematopoietic Homeostasis Are Disrupted in Lnk-deficient Mice
The adaptor protein Lnk, and the closely related proteins APS and SH2B, form a subfamily of SH2 domain-containing proteins implicated in growth factor, cytokine, and immunoreceptor signaling. To elucidate the physiological function of Lnk, we derived Lnk-deficient mice. Lnk−/− mice are viable, but display marked changes in the hematopoietic compartment, including splenomegaly and abnormal lymphoid and myeloid homeostasis. The in vitro proliferative capacity and absolute numbers of hematopoietic progenitors from Lnk−/− mice are greatly increased, in part due to hypersensitivity to several cytokines. Moreover, an increased synergy between stem cell factor and either interleukin (IL)-3 or IL-7 was observed in Lnk−/− cells. Furthermore, Lnk inactivation causes abnormal modulation of IL-3 and stem cell factor–mediated signaling pathways. Consistent with these results, we also show that Lnk is highly expressed in multipotent cells and committed precursors in the erythroid, megakaryocyte, and myeloid lineages. These data implicate Lnk as playing an important role in hematopoiesis and in the regulation of growth factor and cytokine receptor–mediated signaling
Functional Consequences of the Postnatal Switch From Neonatal to Mutant Adult Glycine Receptor α1 Subunits in the Shaky Mouse Model of Startle Disease
Mutations in GlyR α1 or β subunit genes in humans and rodents lead to severe startle disease characterized by rigidity, massive stiffness and excessive startle responses upon unexpected tactile or acoustic stimuli. The recently characterized startle disease mouse mutant shaky carries a missense mutation (Q177K) in the β8-β9 loop within the large extracellular N-terminal domain of the GlyR α1 subunit. This results in a disrupted hydrogen bond network around K177 and faster GlyR decay times. Symptoms in mice start at postnatal day 14 and increase until premature death of homozygous shaky mice around 4–6 weeks after birth. Here we investigate the in vivo functional effects of the Q177K mutation using behavioral analysis coupled to protein biochemistry and functional assays. Western blot analysis revealed GlyR α1 subunit expression in wild-type and shaky animals around postnatal day 7, a week before symptoms in mutant mice become obvious. Before 2 weeks of age, homozygous shaky mice appeared healthy and showed no changes in body weight. However, analysis of gait and hind-limb clasping revealed that motor coordination was already impaired. Motor coordination and the activity pattern at P28 improved significantly upon diazepam treatment, a pharmacotherapy used in human startle disease. To investigate whether functional deficits in glycinergic neurotransmission are present prior to phenotypic onset, we performed whole-cell recordings from hypoglossal motoneurons (HMs) in brain stem slices from wild-type and shaky mice at different postnatal stages. Shaky homozygotes showed a decline in mIPSC amplitude and frequency at P9-P13, progressing to significant reductions in mIPSC amplitude and decay time at P18-24 compared to wild-type littermates. Extrasynaptic GlyRs recorded by bath-application of glycine also revealed reduced current amplitudes in shaky mice compared to wild-type neurons, suggesting that presynaptic GlyR function is also impaired. Thus, a distinct, but behaviorally ineffective impairment of glycinergic synapses precedes the symptoms onset in shaky mice. These findings extend our current knowledge on startle disease in the shaky mouse model in that they demonstrate how the progression of GlyR dysfunction causes, with a delay of about 1 week, the appearance of disease symptoms
Pickleball for Inactive Mid-Life and Older Adults in Rural Utah: A Feasibility Study
Many diseases, disabilities, and mental health conditions associated with aging can be delayed or prevented through regular exercise. Several barriers to exercise, many of which are exacerbated in rural communities, prevent mid-life and older adults from accessing its benefits. However, recently, a racquet sport named pickleball has become popular among older adults, and it appears to overcome some of these barriers. We conducted a feasibility study to evaluate the impact of a six-week pickleball intervention on measures of muscle function, cognitive function, perceived pain, and cardio-metabolic risk, as well as several psychosocial factors contributing to adherence in sedentary rural participants. Participants improved their vertical jump, cognitive performance, and reported a decrease in self-reported pain, suggesting improved physical and cognitive health across the sample. Participants also reported high levels of satisfaction and demonstrated good adherence over the duration of the study. Perhaps of greatest value was the overwhelmingly positive response from participants to the intervention and follow-up interviews reporting a desire to continue pickleball play beyond the study period. Overall, pickleball appears to be a promising intervention to, (1) elicit functional- and cognitive-related improvements, and (2) motivate mid-life and older adults to adhere to exercise sufficiently long to benefit their health
- …