74 research outputs found

    Phosphorylation in intrinsically disordered regions regulates the activity of Neurogenin2.

    Get PDF
    BACKGROUND: Neuronal differentiation is largely under the control of basic Helix-Loop-Helix (bHLH) proneural transcription factors that play key roles during development of the embryonic nervous system. In addition to well-characterised regulation of their expression, increasing evidence is emerging for additional post-translational regulation of proneural protein activity. Of particular interest is the bHLH proneural factor Neurogenin2 (Ngn2), which orchestrates progression from neural progenitor to differentiated neuron in several regions of the central nervous system. Previous studies have demonstrated a key role for cell cycle-dependent multi-site phosphorylation of Ngn2 protein at Serine-Proline (SP) sites for regulation of its neuronal differentiation activity, although the potential structural and functional consequences of phosphorylation at different regions of the protein are unclear. RESULTS: Here we characterise the role of phosphorylation of specific regions of Ngn2 on the stability of Ngn2 protein and on its neuronal differentiation activity in vivo in the developing embryo, demonstrating clearly that the location of SP sites is less important than the number of SP sites available for control of Ngn2 activity in vivo. We also provide structural evidence that Ngn2 contains large, intrinsically disordered regions that undergo phosphorylation by cyclin-dependent kinases (cdks). CONCLUSIONS: Phosphorylation of Ngn2 occurs in both the N- and C-terminal regions, either side of the conserved basic Helix-Loop-Helix domain. While these phosphorylation events do not change the intrinsic stability of Ngn2, phosphorylation on multiple sites acts to limit its ability to drive neuronal differentiation in vivo. Phosphorylated regions of Ngn2 are predicted to be intrinsically disordered and cdk-dependent phosphorylation of these intrinsically disordered regions contributes to Ngn2 regulation.This work was supported by MRC Research Grant G0700758 (AP), a Cancer Research UK Studentship (CH) and an MRC DTA Studentship (GM). Support was also received (IL) from the TGE RMN THC (FR-3050, France). We acknowledge support for international collaboration by a BQR fellowship from Lille North of France University. The NMR facilities were funded by the Région Nord, CNRS, Pasteur Institute of Lille, European Community (FEDER), French Research Ministry and the University of Sciences and Technologies of Lille 1.This is the final version. It was first published by BioMed Central at http://www.biomedcentral.com/1471-2091/15/2

    The F-box protein Cdc4/Fbxw7 is a novel regulator of neural crest development in Xenopus laevis.

    Get PDF
    BACKGROUND: The neural crest is a unique population of cells that arise in the vertebrate ectoderm at the neural plate border after which they migrate extensively throughout the embryo, giving rise to a wide range of derivatives. A number of proteins involved in neural crest development have dynamic expression patterns, and it is becoming clear that ubiquitin-mediated protein degradation is partly responsible for this. RESULTS: Here we demonstrate a novel role for the F-box protein Cdc4/Fbxw7 in neural crest development. Two isoforms of Xenopus laevis Cdc4 were identified, and designated xCdc4alpha and xCdc4beta. These are highly conserved with vertebrate Cdc4 orthologs, and the Xenopus proteins are functionally equivalent in terms of their ability to degrade Cyclin E, an established vertebrate Cdc4 target. Blocking xCdc4 function specifically inhibited neural crest development at an early stage, prior to expression of c-Myc, Snail2 and Snail. CONCLUSIONS: We demonstrate that Cdc4, an ubiquitin E3 ligase subunit previously identified as targeting primarily cell cycle regulators for proteolysis, has additional roles in control of formation of the neural crest. Hence, we identify Cdc4 as a protein with separable but complementary functions in control of cell proliferation and differentiation

    Lgr5+ stem and progenitor cells reside at the apex of a heterogeneous embryonic hepatoblast pool.

    Get PDF
    During mouse embryogenesis, progenitors within the liver known as hepatoblasts give rise to adult hepatocytes and cholangiocytes. Hepatoblasts, which are specified at E8.5-E9.0, have been regarded as a homogeneous progenitor population that initiate differentiation from E13.5. Recently, scRNA-seq analysis has identified sub-populations of transcriptionally distinct hepatoblasts at E11.5. Here, we show that hepatoblasts are not only transcriptionally but also functionally heterogeneous, and that a subpopulation of E9.5-E10.0 hepatoblasts exhibit a previously unidentified early commitment to cholangiocyte fate. Importantly, we also identify a subpopulation constituting 2% of E9.5-E10.0 hepatoblasts that express the adult stem cell marker Lgr5, and generate both hepatocyte and cholangiocyte progeny that persist for the lifespan of the mouse. Combining lineage tracing and scRNA-seq, we show that Lgr5 marks E9.5-E10.0 bipotent liver progenitors residing at the apex of a hepatoblast hierarchy. Furthermore, isolated Lgr5+ hepatoblasts can be clonally expanded in vitro into embryonic liver organoids, which can commit to either hepatocyte or cholangiocyte fates. Our study demonstrates functional heterogeneity within E9.5 hepatoblasts and identifies Lgr5 as a marker for a subpopulation of bipotent liver progenitors.M.H. is a Wellcome Trust Sir Henry Dale Fellow and is jointly funded by the Wellcome Trust and the Royal Society (104151/Z/14/Z); M.H. and N.P. are funded by a Horizon 2020 grant (LSFM4LIFE). C.H. was funded by a Cambridge Stem Cell Institute Seed funding for interdisciplinary research awarded to M.H. and B.D.S., B.D.S acknowledges funding from the Royal Society E.P. Abraham Research Professorship (RP\R1\180165) and Wellcome Trust (098357/Z/12/Z). W.L. and B.G. were supported by programmatic funding from the Wellcome Trust, CRUK and Bloodwise, core infrastructure support from the Wellcome and MRC to the Wellcome & MRC Cambridge Stem Cell Institute, and an MRC Clinical Research Infrastructure grant supporting single cell molecular analysis. S.R. was funded on a Herchel-Smith Fellowship. The authors acknowledge core funding to the Gurdon Institute from the Wellcome Trust (092096) and CRUK (C6946/A14492)

    Synaptic proteomics reveal distinct molecular signatures of cognitive change and C9ORF72 repeat expansion in the human ALS cortex

    Get PDF
    Increasing evidence suggests synaptic dysfunction is a central and possibly triggering factor in Amyotrophic Lateral Sclerosis (ALS). Despite this, we still know very little about the molecular profile of an ALS synapse. To address this gap, we designed a synaptic proteomics experiment to perform an unbiased assessment of the synaptic proteome in the ALS brain. We isolated synaptoneurosomes from fresh-frozen post-mortem human cortex (11 controls and 18 ALS) and stratified the ALS group based on cognitive profile (Edinburgh Cognitive and Behavioural ALS Screen (ECAS score)) and presence of a C9ORF72 hexanucleotide repeat expansion (C9ORF72-RE). This allowed us to assess regional differences and the impact of phenotype and genotype on the synaptic proteome, using Tandem Mass Tagging-based proteomics. We identified over 6000 proteins in our synaptoneurosomes and using robust bioinformatics analysis we validated the strong enrichment of synapses. We found more than 30 ALS-associated proteins in synaptoneurosomes, including TDP-43, FUS, SOD1 and C9ORF72. We identified almost 500 proteins with altered expression levels in ALS, with region-specific changes highlighting proteins and pathways with intriguing links to neurophysiology and pathology. Stratifying the ALS cohort by cognitive status revealed almost 150 specific alterations in cognitively impaired ALS synaptic preparations. Stratifying by C9ORF72-RE status revealed 330 protein alterations in the C9ORF72-RE +ve group, with KEGG pathway analysis highlighting strong enrichment for postsynaptic dysfunction, related to glutamatergic receptor signalling. We have validated some of these changes by western blot and at a single synapse level using array tomography imaging. In summary, we have generated the first unbiased map of the human ALS synaptic proteome, revealing novel insight into this key compartment in ALS pathophysiology and highlighting the influence of cognitive decline and C9ORF72-RE on synaptic composition. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40478-022-01455-z

    Circulating tumour DNA is a promising biomarker for risk stratification of central chondrosarcoma with IDH1/2 and GNAS mutations

    Get PDF
    Chondrosarcoma (CS) is a rare tumour type and the most common primary malignant bone cancer in adults. The prognosis, currently based on tumour grade, imaging and anatomical location, is not reliable, and more objective biomarkers are required. We aimed to determine whether the level of circulating tumour DNA (ctDNA) in the blood of CS patients could be used to predict outcome. In this multi-institutional study, we recruited 145 patients with cartilaginous tumours, of which 41 were excluded. ctDNA levels were assessed in 83 of the remaining 104 patients, whose tumours harboured a hotspot mutation in IDH1/2 or GNAS. ctDNA was detected pre-operatively in 31/83 (37%) and in 12/31 (39%) patients postoperatively. We found that detection of ctDNA was more accurate than pathology for identification of high-grade tumours and was associated with a poor prognosis; ctDNA was never associated with CS grade 1/atypical cartilaginous tumours (ACT) in the long bones, in neoplasms sited in the small bones of the hands and feet or in tumours measuring less than 80 mm. Although the results are promising, they are based on a small number of patients, and therefore, introduction of this blood test into clinical practice as a complementary assay to current standard-of-care protocols would allow the assay to be assessed more stringently and developed for a more personalised approach for the treatment of patients with CS
    corecore