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Abstract

Background: Neuronal differentiation is largely under the control of basic Helix-Loop-Helix (bHLH) proneural
transcription factors that play key roles during development of the embryonic nervous system. In addition to
well-characterised regulation of their expression, increasing evidence is emerging for additional post-translational
regulation of proneural protein activity. Of particular interest is the bHLH proneural factor Neurogenin2 (Ngn2),
which orchestrates progression from neural progenitor to differentiated neuron in several regions of the central
nervous system. Previous studies have demonstrated a key role for cell cycle-dependent multi-site phosphorylation of
Ngn2 protein at Serine-Proline (SP) sites for regulation of its neuronal differentiation activity, although the potential
structural and functional consequences of phosphorylation at different regions of the protein are unclear.

Results: Here we characterise the role of phosphorylation of specific regions of Ngn2 on the stability of Ngn2 protein
and on its neuronal differentiation activity in vivo in the developing embryo, demonstrating clearly that the location of
SP sites is less important than the number of SP sites available for control of Ngn2 activity in vivo. We also provide
structural evidence that Ngn2 contains large, intrinsically disordered regions that undergo phosphorylation by
cyclin-dependent kinases (cdks).

Conclusions: Phosphorylation of Ngn2 occurs in both the N- and C-terminal regions, either side of the conserved
basic Helix-Loop-Helix domain. While these phosphorylation events do not change the intrinsic stability of Ngn2,
phosphorylation on multiple sites acts to limit its ability to drive neuronal differentiation in vivo. Phosphorylated regions
of Ngn2 are predicted to be intrinsically disordered and cdk-dependent phosphorylation of these intrinsically disordered
regions contributes to Ngn2 regulation.

Keywords: Phosphorylation, Intrinsic disorder, Protein NMR, Xenopus laevis, Neurogenin, Protein stability, Transcription
factor, bHLH proteins, Protein folding
Background
During normal embryonic development, the tight regula-
tion of cell fate decisions is absolutely required and dif-
ferentiated phenotype is generally conferred by the
transcription factor profile. In some cases a complete
change of cellular identity can be driven by ectopic
expression of one or a combination of such factors. For
instance, fibroblasts can be reverted to pluripotency by
introduction of the transcription factors Oct4, Sox2, Klf4
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and c-Myc [1]. Studies have also highlighted the poten-
tial of the basic Helix-Loop-Helix (bHLH) family of
transcription factors to induce fate reprogramming of
mature cells, converting cells from one differentiated
phenotype into another: for example, exogenous MyoD
is capable of reprogramming mouse fibroblasts to myo-
cytes [2], and Ngn3, Pdx1 and MafA can convert liver
cells into pancreatic beta cells in vivo [3]. While tran-
scription factor expression and activity can be manipu-
lated in vitro and in vivo to generate cells of a specific
phenotype, it is clear that in vivo such transcription fac-
tor networks are tightly regulated to maintain pheno-
typic stability, and prevent inappropriate activation that
might lead to dysregulation of the maintenance of cell
fate. Whilst most efforts have focused on elucidating
regulation of lineage-specific transcription factors at the
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level of gene expression, emerging evidence increasingly
points to post-translational modification as a key regulator
of transcriptional networks in response to the cellular
environment [4].
Neurogenin2 (Ngn2) is a bHLH transcription factor that

regulates the transition from neural progenitor to differen-
tiating neuron. For instance, Ngn2 is involved in the for-
mation of sensory neurons from the epibranchial placode
[5] and neurogenesis in dorsal root ganglia [6], where it
acts to determine the fate of progenitor cells as neuronal
precursors and also to repress glial cell fates using separ-
ate mechanisms [7,8]. Furthermore, cell cycle exit and cell
motility are regulated by Ngn2 [9], while experimentally,
differentiation of neural stem cells can be induced by
transfection of Ngn2 [10,11]. To undertake these roles,
Ngn2 acts to upregulate a large number of downstream
targets, including a cascade of additional bHLH transcrip-
tion factors, such as NeuroD, as well as structural and
functional genes associated with mature neuronal activity
[12]. For transcriptional activity at its targets, Ngn2 has an
obligate heterodimeric DNA binding partner, E12/E47,
and this heterodimer binds to DNA, recruiting transcrip-
tional coactivators such as p300/CBP and Brg1 to facilitate
target upregulation [13,14]. However, Ngn2 is expressed
in neural progenitor cells prior to their differentiation [5],
implying that its neurogenic activity must be suppressed
until a permissive environment exists. Such regulation is
likely to occur at the level of post-translational control of
protein activity, which in turn is likely to be both dependent
on and a regulator of protein tertiary and quaternary struc-
ture, although the higher order structure of Ngn2 is poorly
characterised.
Proteins carry out various roles in the cell as a function

of their structure. Enzymes require specific active site
conformations in order to carry out catalysis and structural
proteins require particular conformations to achieve mech-
anical strength. However it has become apparent that
many functional proteins are, in fact, not natively folded at
all times in the cell [15]. Proteins that are natively unfolded
and lacking regular structure are termed intrinsically disor-
dered (ID) proteins [16]. ID proteins show a lack of hydro-
phobicity [17] and extreme isoelectric point (pI) values due
to a large net charge from a high prevalence of charged
residues (see Table one in Weinreb et al., [18]). It has also
been suggested that there is an increased rate of evolution
in ID segments and proteins [19]. Therefore it may be that
in these regions there is a lack of function allowing uncon-
strained mutation; or perhaps the function of the protein
requires disorder itself and so a lack of evolutionary con-
straint on specific sequence allows a larger amount of va-
riability. An investigation of the gene ontology terms
associated with ID proteins highlights a significant number
of proteins that are involved in DNA-binding, transcription
activation and that act as transcription factors [20]. In these
cases, intrinsic disorder would appear to regulate protein-
protein and protein-nucleic acid binding interactions, as
thermodynamically this gives flexibility to signaling pro-
cesses and the assembly of complexes in the cell. The free
energy of binding is counteracted by the free energy re-
quired to fold the structure and so overall there is only a
small free energy change [21].
While such a small free energy change would be pre-

dicted to allow only a low affinity of binding, there is a
trade-off achieved with high specificity, through a require-
ment for the correct binding interactions and easy revers-
ibility [22]. So small are the energy differences involved,
that this may result in minor changes to the structure of a
protein, but dramatic alterations to the formation of multi-
factor complexes. For example, this may allow fine tweak-
ing of transcription dynamics, to form promoter complexes
with DNA-binding cycles of various time periods leading
to differential activation of various downstream targets
[23,24]. ID proteins exhibit less transcriptional noise in
expression than structured proteins and so appear to be
tightly regulated at the point of their destruction [25],
which also may further lead to tight control of downstream
target gene expression. There is a high correlation between
specific amino acid composition of ID proteins and phos-
phorylation sites, suggesting that phosphorylation may be
promoted in disordered regions [26]. Furthermore, ID pro-
teins are targeted by twice as many kinases as structured
proteins [25]. Many of those kinases whose substrates are
mainly unstructured proteins also tend to be regulated in a
cell cycle-dependent manner [25].
Ngn2 exhibits some of the features common to ID pro-

teins: there are a large number of charged residues leading
to a low level of hydrophobicity [27] and the protein runs
at a higher molecular mass (around 36 kDa) than its pre-
dicted molecular mass (23.4 kDa) [18]. Ngn2 also shares
many similarities with ID proteins with regard to amino
acid composition [27], function [20] and stabilization
upon the binding of other cofactors [28,29]. bHLH pro-
teins show significant sequence homology in the bHLH
domain only [30] and large sequence variability in the
flanking regions, as is found in the evolutionary compari-
son of related ID proteins [19], again indicating the poten-
tial for large disordered regions in Ngn2. There is no
published structural information for Ngn2 but a limited
number of crystal structures are available for bHLH family
homologues such as MyoD and NeuroD, bound to E47 as
a heterodimer to DNA [31,32]. bHLH protein crystal
structures exclude the N- and C-terminal regions outside
of the bHLH domain [31], as these regions are predicted
to be disordered and thus will reduce the ability to purify,
and therefore crystalise, the protein [33].
The stability of many bHLH proteins is regulated by

phosphorylation events, e.g. MyoD [34]. Our previous
work has highlighted that Ngn2 is a highly unstable
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protein [28,35-37], which appears to be highly phosphor-
ylated in a cell cycle-dependent manner at serine-proline
(SP) sites [38,39]. The relationship between the stability
of Ngn2 and its phosphorylation status has been only
briefly explored previously [28,38] but a direct link
between phosphorylation at SP sites and the stability of
Ngn2 has not been investigated. In this work we explore
the effects of phosphorylation at specific SP sites of Ngn2
on the activity and structure of the protein. We find that
phosphorylation of Ngn2 has no significant effect on its
intrinsic stability. Mutation of phosphorylation sites in
both the N- and C-terminal regions contributes to en-
hanced Ngn2 neuronal differentiation activity and further
mutational analysis confirms that it is the number, and
not position, of phosphorylation sites available that con-
trols protein activity in vivo. Finally, we also present the
first structural validation by NMR of full-length Ngn2 pro-
tein, and directly demonstrate phosphorylation in the
N-terminal region of mNgn2 by NMR spectroscopy.

Results
Mutation of conserved and non-conserved SP
phosphorylation sites does not significantly alter Ngn2
protein half-life in vitro
If specific phosphorylation sites act to regulate Ngn2 activ-
ity then we would expect such sites to be highly conserved
across species, in line with the conservation of Ngn2 func-
tion. All available NCBI Ngn2 protein sequences were
aligned using the Clustal W2 multiple sequence alignment
tool (Additional file 1: Figure S1), and compared to Xen-
opus laevis Ngn2 (xNgn2), where multi-site phosphoryl-
ation and stability have been best characterised [28,35-39].
The Ngn2 bHLH domain was defined by homology to the
MyoD and NeuroD bHLH domains as lying between gly-
cine 72 and leucine 139 of the xNgn2 sequence ([30],
Additional file 1: Figure S1, green box). Compared to hu-
man Ngn2 (hNgn2), the sequence most divergent from
xNgn2, the xNgn2 bHLH domain shows 84% conservation
and 99% similarity and thus appears to be highly con-
served, in agreement with previously published studies
(reviewed in [30]). By contrast, the N-terminal region
of xNgn2 shows 24% conservation and 70% similarity
and the C-terminal region of xNgn2 shows 31% conserva-
tion and 74% similarity to hNgn2. The N- and C-terminal
regions are therefore not as highly conserved as the bHLH
domain but both show a similar extent of conservation
compared to each other.
Ngn2 has previously been shown to be phosphorylated

on serines of serine-proline (SP) sites [38,39], while
threonine-proline (TP) sites may also be potential sites of
phosphorylation. There are no SP or TP sites present in
the bHLH domain of any species. Surprisingly, given the
poor conservation of sequence overall, three of the four
SP sites (serines 172, 181 and 184) in the C-terminal
region of xNgn2 are highly conserved with all other spe-
cies whilst the other SP site is close in the primary se-
quence to a site conserved in other species. These sites
include the two residues identified as glycogen synthase
kinase 3β (GSK3β) phosphorylation sites in mNgn2 [40].
By contrast, despite the presence of 5 SP sites in the N-
terminal region of xNgn2, a highly conserved SP site is
seen in the N-terminal region of other species but this is
not conserved in xNgn2. Although we have previously
shown that in general it is the number of SP site phos-
phorylation events that is critical for regulating Ngn2
function in vitro rather than their precise location [38,39],
nevertheless, the conservation of SP site locations raises
the possibility that SP or TP phosphorylation sites in the
C-terminal region may be particularly important for the
regulation of Ngn2 function. We have explored this possi-
bility here by investigating further the protein stability and
function of xNgn2 mutants where specific combinations
of SP sites are mutated to prevent their phosphorylation.
To assess the role of SP site phosphorylation in the regu-

lation of Ngn2 stability and function, we generated mutant
versions of xNgn2 in which either N- or C-terminal region
SP sites were mutated to Alanine-Proline (AP) to gen-
erate NT-S-AxNgn2 and CT-S-AxNgn2, respectively
(see Additional file 2: Figure S2 for a summary of SP
site mutants used). We first analysed protein stability
in mitotic Xenopus egg extracts that have been previ-
ously shown to maximally phosphorylate Ngn2 at SP
sites [38]. NT-S-AxNgn2 and CT-S-AxNgn2 protein
stabilities were compared to those of wild-type xNgn2
and a mutant version of xNgn2 in which all SP sites are
mutated to AP and which demonstrates a dramatically in-
creased neuronal differentiation activity in vivo in Xenopus
frog embryos (9S-AxNgn2, see Additional file 2: Figure S2
and [38]).
To investigate the effect of mutation of N- and C-

terminal region SP sites on protein stability, 35S-radio-
labelled in vitro translated (IVT) xNgn2, 9S-AxNgn2,
NT-S-AxNgn2 and CT-S-AxNgn2 were added to Xenopus
mitotic egg extract and samples removed at increasing
timepoints. Proteins were separated by 15% SDS-PAGE
and subjected to autoradiography to allow measurement
of protein levels over time and calculation of the half-life
for degradation using first-order rate kinetics (Figure 1A)
[28,35]. In this assay, xNgn2 had a half-life of 33.0 +/− 2.1
mins. Although the trend is towards increased stability,
9S-AxNgn2 shows no statistically significant difference
compared to wild-type Ngn2, with a half-life of 55.9 +/−
10.0 mins. NT-S-AxNgn2 has a half-life of 28.5 +/− 2.8
mins, while CT-S-AxNgn2 has a half-life of 74.4 +/− 20.3
mins. Both mutant versions therefore tend towards in-
creased stability compared to wild-type xNgn2, but
again variability in repeat assays means that no statis-
tically significant difference in stability was observed.
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Figure 1 Phosphorylation at SP sites in both the N- and C-terminal regions regulates xNgn2 activity. (A) 35S-labelled IVT xNgn2, or the
indicated Serine-Proline to Alanine-Proline xNgn2 mutants, full phosphomutant (9S-AxNgn2), N-terminal region (NT-S-AxNgn2) or C-terminal region
(CT-S-AxNgn2), were added to Xenopus laevis mitotic egg extracts and incubated at 21°C. Samples were taken at 0, 15, 30, 45, 60, 75, 90 and 120 mins
and separated on 15% SDS-PAGE gels. Gels were analyzed by quantitative phosphorimaging analysis, calculating the average stabilization relative to
wild-type xNgn2 within mitotic extract. Half-lives were calculated using first-order rate kinetics, and errors calculated using the Standard Error of the
Mean (SEM). (B) Embryos were injected into 1 cell of 2 cells with the indicated amount of mRNA encoding GFP, xNgn2, CT-S-AxNgn2 or 9S-AxNgn2,
injected side to the left. Embryos were fixed at stage 15 and subjected to in situ hybridization for neural ß-tubulin expression before being scored for
increased neurogenesis on the injected side compared to the uninjected side on a scale of 0–3 [38]. The experiment was performed in duplicate
(n = 17-37). (C) 1 cell-stage embryos were injected with 20 pg of mRNA encoding GFP, xNgn2, NT-S-AxNgn2, CT-S-AxNgn2 or 9S-AxNgn2, harvested
at stage 15 and expression of xNeuroD analysed by qPCR (5 embryos per sample, n = 3).
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Therefore, we have directly demonstrated that phos-
phorylation status of Ngn2 does not directly control
its stability in Xenopus.

SP sites in both the N- and C-terminal regions regulate
the activity of xNgn2
Previous work has indicated that preventing xNgn2 phos-
phorylation on all 9 SP sites enhances its ability to drive
neuronal differentiation in vitro and in vivo [38,39]. We
have observed phosphorylation of xNgn2 at SP sites in
both the N- and C-terminal regions following incubation
in Xenopus mitotic egg extract [38]. Assaying the activity
of a sequential mutant series of mouse Ngn2 (mNgn2)
where SP sites were additively mutated from the C-
terminus (mutating the first C-terminal SP in mutant 1,
the first and second in mutant 2, the first, second and
third in mutant 3 etc.) showed an incremental increase in
neuronal differentiation activity in vitro with the loss of
each additional SP site [38,39]. In addition, analysis of the
in vivo neuronal differentiation activity of a single SP site
knock-in series allowed us to determine that phosphoryl-
ation at individual SP sites could not account for regula-
tion of the neuronal differentiation activity of xNgn2 [38].
However, these analyses did not allow us to determine the
contribution of the N- and C-terminal region SP sites to
the phospho-regulation of the neuronal differentiation ac-
tivity of mNgn2, nor whether one region played a more
prominent regulatory role than the other. mNgn2 has only
two N-terminal SP sites and previous assays [38] showed
in fact that their mutation had a minimal effect on the dif-
ferentiation of P19 cells, which respond to overexpression
of proneural proteins by undergoing neuronal differenti-
ation [41]. This points to increased prominence for C-
terminal phosphorylation events for Ngn2 regulation.
However, it was unclear whether the mNgn2 N-terminal
SP sites had only minimal effects on the neuronal dif-
ferentiation-inducing ability of Ngn2 because there are
only two of them or because phosphorylation of sites in
the N-terminus of Ngn2 plays an intrinsically lesser role
in regulating Ngn2 activity than phosphorylation of sites
in the C-terminus for domain structure/function reasons.
By contrast to mNgn2, xNgn2 has five SP sites in the N-
terminus. We investigated whether the larger number of
potential phosphorylation sites in xNgn2 compared to
mNgn2 results in a greater contribution of N-terminal
phosphorylation to regulation of xNgn2 activity relative to
mNgn2, or whether N-terminal phosphorylation, regardless
of number of sites available, plays little role in phospho-
regulation of the neuronal differentiation activity of Ngn2
protein.
To assess whether preventing phosphorylation at the

conserved SP sites in the C-terminus of xNgn2 alone
was sufficient to maximally activate the protein, we com-
pared the neuronal differentiation activity of xNgn2, CT-
S-AxNgn2 and 9S-AxNgn2 in vivo in Xenopus embryos.
To this end, mRNAs encoding xNgn2, CT-S-AxNgn2
and 9S-AxNgn2 were generated and overexpressed in 1
cell of 2 cell Xenopus embryos, and an assessment of
ectopic neurogenesis was performed as previously de-
scribed, comparing the injected and the uninjected side
[38]. As expected, 9S-AxNgn2 had significantly higher
neuronal differentiation activity than wild-type xNgn2
[38,39]. The overexpression of CT-S-AxNgn2 resulted in
a level of ectopic neurogenesis intermediate between
that of overexpressed wild-type xNgn2 and 9S-AxNgn2
(Figure 1B), indicating that phosphorylation on the N-
terminus of xNgn2 does indeed contribute to limiting
xNgn2 neuronal differentiation activity. To further in-
vestigate the neuronal differentiation activity of the mu-
tants in vivo, we then quantified the expression of the
direct downstream xNgn2 target xNeuroD by qRT-PCR
in response to overexpression of xNgn2, NT-S-AxNgn2,
CT-S-AxNgn2 and 9S-AxNgn2 in 1 cell-stage Xenopus
embryos (Figure 1C). Both NT-S-AxNgn2 and CT-S-
AxNgn2 showed an intermediate neuronal differenti-
ation activity between that of xNgn2 and 9S-AxNgn2,
demonstrating that phosphorylation at SP sites in both
the N- and C-terminal regions of xNgn2 contributes to
regulating its transcriptional activity. Therefore, in addition
to our previous work highlighting the importance of the
number of SP sites for regulation of neuronal differenti-
ation activity, we show clearly here that SP sites in both the
N- and C-terminal domains can contribute to regulation of
protein function.
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In vivo activity of xNgn2 is a semi-quantitative measure of
phospho-site availability
P19 embryonal carcinoma cells respond to ectopic Ngn2
expression by undergoing neuronal differentiation in vitro
[41]. Our previous data in P19 cells with a cumulative
phospho-mutant series of mNgn2 proteins (where SP sites
are additively mutated from the C-terminus: mutant 1,
most C-terminal SP site mutated, mutant 2, the two SP
sites nearest the C-terminus are mutated, etc.) had sug-
gested that the number of SP sites available for phosphor-
ylation act semi-quantitatively to regulate the neuronal
differentiation activity of Ngn2 [38,39]. The results
presented above support the hypothesis that phospho-
regulation of Ngn2 is not strictly dependent on the position
or level of conservation of the SP site that is modified but
rather on the number of SP sites available. To confirm this
in vivo, we overexpressed a cumulative phospho-mutant
series of xNgn2 proteins, this time where SP sites were ad-
ditively mutated from the N-terminus (mutant 1, most N-
terminal SP site mutated, mutant 2, the two SP sites nearest
the N-terminus are mutated, etc.; Additional file 2: Figure
S2, as opposed to mutation from the C-terminus for
mNgn2 as described above [38]), in 1 cell of 2 cell Xenopus
embryos, to semi-quantitatively assay the multi-site phos-
pho-regulation of xNgn2′s neuronal differentiation activity
in vivo. Embryos were subjected to in situ hybridization for
neural β-tubulin expression and the injected and uninjected
sides compared as above (Figure 2). As additional SP sites
were mutated from the N-terminus, we saw that the neur-
onal differentiation activity of the mutant xNgn2 proteins
progressively increased, finally reaching maximal activity
when all 9 SP sites were mutated in 9S-AxNgn2. Strikingly,
when taken with data demonstrating a gradual increase in
mNgn2 activity in P19 cells in vitro as SP sites are cumula-
tively mutated from the C-terminus [38], these data dem-
onstrate conclusively that the precise location of SP sites is
not of major importance for the phospho-regulation of
Ngn2 activity, but rather it is the number of SP sites avail-
able for modification that is critical for controlling Ngn2 ac-
tivity in vivo and in vitro. Compared to our previous data
showing the effect of serial loss of SP sites from the C-
terminal end of the protein in vitro, we now show, in vivo,
that the reciprocal mutation series from the N-terminus of
the protein behaves in a similar way. We can clearly now
demonstrate that it is neither specific SP sites, nor their lo-
cation in a particular protein domain, but rather it is the ab-
solute number of phosphorylation sites, that determines
Ngn2 protein activity.

Ngn2 proteins are predicted to be intrinsically disordered
outside the bHLH domain
The results presented above, taken together with data in
[38] and [39], strongly support the hypothesis that the
ability of xNgn2 to drive neuronal differentiation is
regulated by modification on multiple SP sites and that
it is the number of SP sites available for modification
and not their position that is the prime determinant of
neuronal differentiation activity. Structural consequences
of phosphorylation could suggest a molecular mechan-
ism for the multi-site phospho-regulation of Ngn2 activ-
ity but the structure of phosphorylated regions of Ngn2
has not been explored.
By analogy with other bHLH proteins, it seems very

likely that the N- and C-terminal regions of Ngn2 are in-
trinsically disordered. Ngn2 exhibits some of the features
of ID proteins: there are a large number of charged resi-
dues leading to a low level of hydrophobicity [27]; and the
protein runs at a higher molecular mass (around 36 kDa)
than its calculated molecular mass (23.4 kDa) [18]. Com-
putational analysis of the extent of protein disorder using
PONDR-FIT (available from www.DisProt.org/pondr-fit.
php [42]), predicts a high degree of disorder in the N- and
C-terminal regions of Xenopus (Figure 3A) and mouse
(Figure 3B) Ngn2, with a highly ordered section in the
middle of the sequence corresponding to the bHLH do-
main. Both Xenopus and mouse Ngn2 exhibit low se-
quence conservation in the N- and C-terminal regions
(see above and Additional file 1: Figure S1) but these re-
gions in both proteins are predicted to be similarly highly
disordered (Figure 3A, B), Further disorder predictions
were carried out with mouse Ngn2 in order to compare
the results from various predictors.
DISOPRED2 (http://bioinf.cs.ucl.ac.uk/disopred/, [43])

is a prediction algorithm that has been developed using
empirically determined standards from experimental data-
sets. DISOPRED2 predicts that mNgn2 contains highly
disordered N- and C-terminal regions flanking a folded
region (Figure 3C), in agreement with the PONDR-FIT
prediction (Figure 3B). FoldIndex (http://bip.weizmann.
ac.il/fldbin/findex, [44]) uses the hydrophobicity and
charge of the residues within the amino acid sequence
to predict disordered regions and in agreement with the
other algorithms, predicts disordered regions in mNgn2 at
the N- and C-terminal regions interspaced by a folded re-
gion (Figure 3D). However, compared to the previous pre-
dictions (Figure 3B, C), FoldIndex predicts the folded
region to be shifted towards the N-terminus and to be
much larger. This correlates with the distribution of
hydrophobic and charged residues in mNgn2 (Additional
file 1: Figure S1). Therefore whilst Ngn2, and other bHLH
proteins, may not be disordered across their entire
length, empirical observations relating to the difficulties
of protein purification [33], together with the disorder
predictions for mNgn2 described above, suggest that in-
trinsically disordered regions are present.
NMR spectroscopy runs into a size problem for folded

proteins because of increased tumbling time with con-
comitant enhanced line broadening of the signals [45]. By
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into 1 cell of 2 cells with 20 pg of mRNA encoding GFP, xNgn2, or the indicated mutant version of xNgn2 from the cumulative mutant series
(see Additional file 2: Figure S2), injected side to the left. Embryos were fixed at stage 15 and subject to in situ hybridization for neural ß-tubulin
expression. (B) Scoring of ectopic neurogenesis on the injected side of embryos from (A) on a scale of −1 - +3 [38]. The experiment was
performed in triplicate (n = 47-87).
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contrast, in ID proteins the fast molecular internal dynam-
ics contribute to longer relaxation times compared to
folded proteins of the same size, and result in narrow res-
onances that allow good detection and resolution [45].
Using this property of the NMR signal, we set out to de-
termine whether we could detect the disordered regions
of Ngn2 and phosphorylation events therein.

Characterization of mouse Ngn2 conformation in solution
and mapping of mouse Ngn2 phosphorylation sites using
NMR spectroscopy
In order to directly confirm SP or TP sites in mNgn2 as tar-
gets for phosphorylation and to obtain further information on
its secondary structure, a bacterially-expressed GST-mNgn2
fusion protein was 15N, or 15N, 13C isotopically-labelled for
NMR spectroscopy analysis. Mouse Ngn2 was chosen, as al-
though both mouse and Xenopus Ngn2 have been well-
characterized [38,39], previous attempts to purify Xenopus
Ngn2 had been unsuccessful and it was hoped that mouse
Ngn2, codon-optimized for bacterial expression, might prove
more tractable (see Methods). Despite the limited solubility of
full-length phosphorylated mNgn2 (see below), after cleavage
of the GST carrier protein, we were still able to obtain a 2D
1H, 15N HSQC spectrum with close to 100 resonances
(Figure 4, Additional file 3: 2D NMR dataset). The poor dis-
persion of the signal on the 1H scale indicates that the



Figure 3 The terminal regions of Ngn2 are predicted to be intrinsically disordered. PONDR-FIT disorder predictions of (A) xNgn2 and
(B) mNgn2. (C) DISOPRED2 and (D) FoldIndex disorder predictions of mNgn2.
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detected regions are disordered in nature, confirming the
primary sequence-based predictions (Figure 3).
To investigate phosphorylation events in its disordered

regions, recombinant mNgn2 protein was phosphorylated
in vitro by incubation with recombinant CyclinA/CDK2
kinase, which was previously shown to phosphorylate xNgn2
([38] and unpublished data) and regulates xNgn2 activity
in vivo [38]. Analysis of the phosphorylated forms of mNgn2
using 2D NMR spectroscopy showed 3 new resonances that
were absent in the 2D spectrum of the unphosphorylated
form of mNgn2, in the region expected for pSer and pThr
residues (Figure 4A, Additional file 3: 2D NMR dataset).
Assignment of the backbone atom resonances of mNgn2

was performed based on 3D experiments on the 15N, 13C
doubly-labelled protein (Additional file 4: Table S1,
Additional file 5: 3D NMR dataset). This assignment does
not cover the full-length protein: the detected domains
correspond to residues 1 to 31 and 49 to 75, containing two
SP sites and one TP site. Comparison with the secondary
structure prediction based on the primary sequence confirms
that these regions of the protein are located outside of the
bHLH domain and are not predicted to adopt stable second-
ary structures (Figure 3 and Additional file 1: Figure S1). Al-
though these regions are disordered, closer examination of
their chemical shifts by comparison with databases of chem-
ical shifts of strictly random coil polymers [46] would suggest
a local tendency to adopt transient secondary structure.
Using the secondary structure propensity analysis, we ob-
served a positive deviation of the experimental chemical
shifts in segments aa15-20 and aa67-74 of the protein, con-
sistent with the adoption of transient alpha-helical structure.
However, a negative deviation in the C-terminal region
between aa49-56 is indicative of a tendency to adopt an
extended conformation (Figure 4B). The phosphorylated
sites therefore reside in regions of high intrinsic disorder.
We next used the carbon signals in the 3D experiments

to identify the phosphorylated residues [47,48]. The CA and
CB chemical shifts allow discrimination of a pS from a pT
residue [49], while the CA-1 and CB-1 resonances will in-
form on the nature of the amino acid at the N-terminus
(Additional file 4: Table S1). Cdks are proline-directed ki-
nases and a proline at the i + 1 position will alter the CA



Figure 4 Annotated 1H, 15N 2D spectra of phosphorylated 15N-mNgn2 showing altered structural positions of phosphorylated
residues. (A) Detail of overlayed 2D [1H, 15N] HSQC spectra of 15N mNgn2 phosphorylated with cycA/CDK2. Resonances corresponding to
phosphorylated Ser and Thr residues are labelled. (B) Secondary Structure Propensity (SSP, [46]) along the mNgn2 sequence calculated based on
the available CA and CB chemical shifts (Additional file 4: Table S1). SSP scores correspond to a calculated percentage of occupancy: the 0.1/-0.1
thresholds, here represented as red lines, being empirically proposed for significance. Regions with positive values are associated with a preferential
α-helical conformation, here presented as cylinders. Regions with negative values are associated with a preferential extended conformation, here
presented as arrows.
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chemical shift by a +2 ppm deviation compared to the
chemical shift expected for a pS or pT [50]. Phosphorylated
residues were thus identified as pS24, pT31 and pS66,
which are SP and TP sites conserved between xNgn2 and
mNgn2 (Figure 4A and Additional file 1: Figure S1).
This is the first structural information obtained by NMR

for full-length Ngn2 protein and it directly demonstrates the
intrinsic disorder inherent to the protein, a characteristic of
Ngn2 previously only predicted by using protein folding
computational algorithms. In addition we have directly
shown that protein phosphorylation in vitro can be mediated
by cyclinA/CDK2 within the intrinsically disordered domain.

Discussion
Studies are revealing the remarkable plasticity of fully dif-
ferentiated somatic cells when exposed to an exogenous set
of transcription factors. From the now well established
transcription factor cocktails that promote reprogramming
to an induced pluripotent cell state [1] through to re-
programming to induced neurons [51], the power of
specific transcription factor networks to determine cell fate
even in the absence of the normal physiological environ-
ment or developmental stage is well accepted. However,
such transcription factor networks must regularly be broken
and replaced during embryonic development, implying a
tight regulation of the transcription factors themselves and
mechanisms for restraining their activities. Although post-
translational methods of regulation, such as phosphorylation
and protein degradation, are beginning to be more widely
investigated [4], mechanisms integrating different forms of
post-translational regulation have been poorly studied. We
have previously described regulation of the proneural bHLH
transcription factor Ngn2 by both ubiquitin-mediated
proteolysis and cell cycle-mediated phosphorylation at SP
sites [28,35-39]. In this study, we have explored possible
links between these modes of regulation and investigated in
greater depth the regulation and structural consequences of
Ngn2 by phosphorylation at SP sites.
By comparing the protein primary sequence of xNgn2 to

homologues in other species (Additional file 1: Figure S1),
it is clear that conservation of Ngn2 sequence outside of
the bHLH domain is poor. Strikingly, however, conserva-
tion of SP sites in the C-terminal region is very high, and
more so than the conservation of SP sites in the N-
terminal region. As Ngn2 is a highly unstable protein, we
investigated whether phosphorylation of these sites might
influence protein half-life. Despite conservation, mutation
of SP sites in the C-terminal region of xNgn2 had no sig-
nificant effect on protein stability, nor did mutation of
N-terminal SP sites (Figure 1A), indicating that phosphor-
ylation on these sites does not regulate the intrinsic stabil-
ity of the protein. However, assays of stability in this
in vitro system do not preclude the possibility that phos-
phorylation of Ngn2 could indirectly influence protein
stability, for instance by affecting its ability to associate
with binding partners not present in egg extract. Both N-
and C-terminal SP sites regulate the overall neurogenic ac-
tivity of xNgn2 in vivo (Figure 1B, C) but our data taken
together indicate (as only suggested indirectly in previous
work) that control of intrinsic protein stability is not the
major mechanism by which phosphorylation at SP sites of
xNgn2 acts to control neuronal differentiation activity.
We went on to expand upon our previous observations

[38,39] and to explore further whether the position of SP sites
has a major influence on their ability to regulate the neuronal
differentiation activity of xNgn2 by using phosphomutant
Ngn2s in vivo in developing embryos. In contrast to mNgn2,
where mutation of its two N-terminal SP sites did not signifi-
cantly enhance its neurogenic activity in vitro in P19 cells, SP
sites in both the N- and C-terminal regions of xNgn2 contrib-
ute to regulation of its neuronal differentiation activity in vivo
in Xenopus embryos (Figure 1B, C and [38]). Our previous
observation in vitro that it is the number and not position of
SP sites which is the determinant of Ngn2 neuronal differ-
entiation activity [38] was confirmed in vivo in Xenopus
embryos using a series of xNgn2 mutants in which SP sites
had been cumulatively changed to AP sites, beginning from
the N-terminus (cumulative SP site mutant series, see
Additional file 2: Figure S2 for more information, Figure 2).
These results, using assays of activity in vivo, clearly reinforce
a model suggested by in vitro data [38] that it is the number,
and not position, of phosphorylation events at SP sites in
Ngn2 that regulate its neuronal differentiation activity.
As it is not the precise location but the number of

phospho-sites available that regulates Ngn2 activity, this led
us to consider whether structural plasticity associated with
intrinsic disorder might facilitate such regulation. In this
regard, previous studies suggested that these regions might
be intrinsically disordered [18,27,33]. ID proteins show an
increased rate of evolution in disordered regions and both
Xenopus and mouse Ngn2 exhibit low sequence conservation
in the N- and C-terminal regions (Additional file 1: Figure S1).
The purification of bHLH proteins is problematic as

illustrated by the work of Aguado-Lllera et al. [33]. The
authors attempted to purify the bHLH domain of Ngn1
using His-tagged, GST-tagged, maltose binding protein-
tagged, biotin-tagged and thioredoxin-tagged protein
constructs in BL21, Rosetta, C41 and BL21pLys cells with
induction at several different temperatures and with
varying concentrations of IPTG. Only one combination
appeared to work at all but the protein was found to be
partially degraded. The authors finally turned to chemical
synthesis of the bHLH domain of Ngn1 instead. Indeed,
bHLH protein crystal structure determination is usually
performed on a protein devoid of the N- and C-terminal
regions (i.e., regions outside of the bHLH domain [31]) as
these regions have previously been predicted to be disor-
dered. However, some evidence exists that even within the
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bHLH domain bound to both its heterodimeric binding
partner and E-box DNA there is still a tendency towards
disorder [33]. Disorder-predicting programs are based
upon protein sequence information alone and the in vivo
environment is not yet accurately reproducible in silico.
Nevertheless, the predictions performed here (Figure 3)
do correlate well for both Xenopus and mouse Ngn2 and
suggest that a high degree of disorder is likely, particularly
in the N- and C-terminal regions. The FoldIndex predic-
tion (Figure 3D) correlates least with the other predic-
tions. However, FoldIndex places a greater bias upon the
hydrophobicity and charge of the residues in the peptide
sequence [44] and whilst this is usually a good predictor
of intrinsic disorder [27] there may be circumstances
under which it is insufficient.
To directly investigate the level of disorder within the

regions of Ngn2, we attempted to purify mNgn2 and in-
vestigate its tertiary structure and phosphorylation by
NMR. Unsurprisingly, the purification of mNgn2 proved
to be difficult; previous attempts to purify xNgn2, using
both bacterial expression and baculovirus systems had
been largely unsuccessful (data not shown). Sarkosyl-
based treatment [52] resulted in the liberation of some
His-mNgn2 from the insoluble fraction of the cell lysate.
Solubility of the protein was greatly improved by using a
GST-tag and we were able to isolate GST-mNgn2 from
the soluble fraction instead (data not shown). Despite
these difficulties, we were able to purify a sufficient
quantity of protein to obtain unambiguous NMR spec-
tra, although signals originate from only the N-terminal
region of the protein. The NMR spectra for mNgn2
demonstrated that the N-terminal region of the protein
was disordered, and that serines 24 and 66 and threo-
nine 31 are phosphorylated in vitro by cyclinA/CDK2
(Figure 4A). That the NMR results comprise spectra
allowing the identification of phosphorylated SP and TP
sites in the N-terminal region, conserved between
xNgn2 and mNgn2, illustrates not only direct phosphor-
ylation of SP sites by cyclinA/CDK2 in vitro but also that
this occurs in the disordered N-terminal region. This
structural evidence for the disordered N-terminal do-
main, and the phosphorylation which modifies it, pro-
vide a direct demonstration of phosphorylation of Ngn2,
and compliment previous work inferring phosphorylation
by using extract systems in vitro and by using activity as-
says of phospho-mutant Ngn2 in vivo.
Our data demonstrate that the N-terminal region is in-

trinsically disordered and argue for a role for ID regions as
integrators of signaling leading to tight regulation of the
neuronal differentiation activity of Ngn2. Intrinsically dis-
ordered regions may well be enriched in post-translational
modifications [26], making them ideal for integration of
different signaling events and post-translational mecha-
nisms of regulation. Such regulation is critical for
normal development and the role of disordered regions
highlights an alternative to the more widely established
mechanism of switching between rigidly structured
forms upon post-translational modification. Our data
support our previous findings that it is the number, and
not position, of phosphorylation sites available that con-
trols Ngn2 neuronal differentiation activity [38,39]. This is
similar to another process involving cell cycle regulation
in the process of differentiation, namely the role of the
Ste5 protein in MAP Kinase signaling in yeast [53].

Conclusions
Phosphorylation at serine-proline (SP) sites in Ngn2 oc-
curs in both the N- and C-terminal regions, located either
side of the bHLH domain, and this phosphorylation does
not alter the intrinsic stability of Ngn2 protein. Multi-site
phosphorylation of SP sites inhibits the neuronal differen-
tiation activity of Ngn2 protein, but it is the total number
of phospho-sites available, rather than their precise se-
quence location or approximate location within a particu-
lar domain within the Ngn2 protein, that controls the
ability of Ngn2 to drive neuronal differentiation in vivo in
Xenopus embryos. We find that the N-and C-terminal re-
gions of Ngn2 are intrinsically disordered and we have
taken advantage of the disordered nature of the mNgn2
protein, and the ability to gain structural information
about the N-terminal domain in particular, to observe
phosphorylation by cyclinA/CDK2 kinase in vitro on an
intrinsically disordered protein using protein NMR.

Methods
Animal care
Xenopus laevis were housed, bred, and treated accord-
ing to the guidelines approved by the UK home office
under the animal (Scientific Procedures) Act 1986. All
animal work has been carried out under UK Home
Office Licence and has passed an Institutional ethical
review committee assessment, undertaken by the Animal
Welfare and Ethical Review Committee (AWERC) at the
University of Cambridge.

Cloning
Point-mutant constructs were made by site-directed mu-
tagenesis (Stratagene) and cloned into pCS2+ as de-
scribed previously [28,35]. Subcloning was carried out
using standard methods.

GST-tagged Ngn2
A DNA construct of mNgn2, codon optimised for bacter-
ial expression, was produced by Genecust (Luxembourg)
in a pUC vector. This was placed into the pGEX (N-
terminal GST-tagging [54]) vector by subcloning by
restriction digest and ligation [55].
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In vitro translation
In vitro translation was carried out using the TNT® SP6
quick coupled transcription/translation system (Promega),
in the presence of 35S-methionine (GE Healthcare), ac-
cording to the manufacturer’s instructions.

In vitro transcription of RNA
RNA for microinjection (mRNA) or as an antisense
probe for in situ hybridization was transcribed in vitro
using constructs with a linearised pCS2+ vector tem-
plate. Transcription was performed as described previ-
ously [38] using either the SP6 mMessage mMachine kit
(Ambion) for mRNA or T3 polymerase (Roche) for anti-
sense probe. Digoxigenin (DIG) labelling of the antisense
probe was performed as described previously [38].

Xenopus extracts
Activated mitotic egg extract was prepared as described
previously [35].

Degradation assays
Degradation assays were carried out as described previ-
ously [28,35,37].

In situ hybridization
In situ hybridization was carried out as described previ-
ously using neural β-tubulin antisense RNA as a probe
[38,39].

Quantitative PCR
Quantitative real-time PCR (qPCR) was performed as
described previously [38]. Briefly, Xenopus embryos were
injected with 20 pg of mRNA at the 1 cell-stage and em-
bryos were allowed to develop to Nieuwkoop and Faber
stage 15 [56]. Samples were pooled such that 5 embryos
for each condition underwent mRNA extraction with
the RNeasy Mini kit (Qiagen) according to manufac-
turer’s instructions. Reverse transcription to form cDNA
was performed with oligodT primers and the Transcrip-
tor High Fidelity cDNA Synthesis kit (Roche) according
to manufacturer’s instructions.

Clustal W2 sequence alignment
Clustal W2 analysis was carried out to align protein
sequences [57].

Protein disorder prediction
Protein sequences were submitted to PONDR-FIT
(available from www.DisProt.org/pondr-fit.php, [42]),
DISOPRED2 (http://bioinf.cs.ucl.ac.uk/disopred/, [43])
and FoldIndex (http://bip.weizmann.ac.il/fldbin/findex,
[44]) for disorder prediction.
Secondary structure prediction
Secondary Structure Propensity (SSP, [46]) along the
mNgn2 sequence was calculated based on the available
CA and CB chemical shifts from NMR data.
Protein purification
GST-mNgn2 was expressed in BL21 (DE3) cells trans-
formed with ampicillin-resistant plasmids and grown
in M9-based semi-rich medium (M9 medium (50 mM
Na2HPO4, 15 mM KH2PO4, 8.5 mM NaCl) supplemented
with MEM, 1 mM MgSO4, 100 μM CaCl2, 1 g l−1 15 N-
NH4Cl, 2 g l−1 13C6-D-glucose (when 13C labelling re-
quired, otherwise 4 g l−1 unlabelled glucose (Sigma) used),
0.7 g l−1 Isogro 13C, 15N powder growth medium (Sigma),
100 μg ml−1 ampicillin) at 37°C to an OD600 of 0.6. Protein
expression was induced with 0.4 mM IPTG at 20°C over-
night. Harvested cells were lysed using lysozyme and son-
ication. Proteins were purified on a glutathione-bead
containing column (Amersham) using an AKTA FPLC
purifier (GE Healthcare) and eluted by cleavage of the
GST tag from the protein using PreScission Protease (GE
Healthcare) overnight at 4°C and elution in 1 × PBS sup-
plemented with 2 mM EDTA.
In vitro phosphorylation of mNgn2
mNgn2 was phosphorylated using recombinant CyclinA3/
Cdk2 [58] protein in 5 mM ATP, 12.5 mM MgCl2, 50 mM
HEPES pH 8.0, 55 mM NaCl, 5 mM DTT, at 30°C for
5 hours [59] before passing through a G25 desalting resin
in a Zeba spin column (Pierce) to buffer exchange into
NMR buffer (50 mM Tris, 25 mM NaCl, 2.5 mM EDTA
and 2 mM DTT, pH 6.8).
NMR
1 mM D4-TMSP (TriMethyl Silyl Propionate), used as a
proton chemical shift internal reference (0 ppm or part
per million), and 5% D2O were added to protein sam-
ples. [1H, 15N] HSQC 2D spectra were recorded at
277 K on a Bruker 600 spectrometer equipped with a
triple resonance cryogenic probehead (Bruker, Karlsruhe,
Germany). Assignment was performed on a sample of
doubly labelled protein at 150 μM, using classical pairs
of 3D experiments. Spectra were processed using Bruker
TOPSPIN 2.1 (Bruker, Karlsruhe, Germany). Peak picking
was performed using Sparky (T. D. Goddard and D. G.
Kneller, SPARKY 3, University of California, San Francisco).
Availability of supporting data
The data sets supporting the results of this article are in-
cluded within the article and in its additional files. NMR
datasets for 2D and 3D experiments are labelled as
“2DNMR” and “3DNMR” respectively.

http://www.disprot.org/pondr-fit.php
http://bioinf.cs.ucl.ac.uk/disopred/
http://bip.weizmann.ac.il/fldbin/findex
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Additional files

Additional file 1: Figure S1. SP sites are conserved in the C-terminal
domain. Ngn2 protein sequences from the NCBI database were aligned
using ClustalW2. The bHLH domain is indicated by the green box and SP
sites conserved in over half of all species are indicated by the red boxes.

Additional file 2: Figure S2. SP site xNgn2 mutants schematic.
Illustration of the various SP site mutants of xNgn2 used in this study.

Additional file 3: 2D NMR dataset. Raw data for 2D NMR experiments.

Additional file 4: Table S1. mNgn2 CA and CB chemical shifts.
Available CA and CB chemical shifts for visible residues.

Additional file 5: 3D NMR dataset. Raw data for 3D NMR experiments.
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