43 research outputs found

    Effect of Localized Mechanical Indentation on Skin Water Content Evaluated Using OCT

    Get PDF
    The highly disordered refractive index distribution in skin causes multiple scattering of incident light and limits optical imaging and therapeutic depth. We hypothesize that localized mechanical compression reduces scattering by expulsing unbound water from the dermal collagen matrix, increasing protein concentration and decreasing the number of index mismatch interfaces between tissue constituents. A swept-source optical coherence tomography (OCT) system was used to assess changes in thickness and group refractive index in ex vivo porcine skin, as well as changes in signal intensity profile when imaging in vivo human skin. Compression of ex vivo porcine skin resulted in an effective strain of −58.5%, an increase in refractive index from 1.39 to 1.50, and a decrease in water volume fraction from 0.66 to 0.20. In vivo OCT signal intensity increased by 1.5 dB at a depth of 1 mm, possibly due to transport of water away from the compressed regions. These finding suggest that local compression could be used to enhance light-based diagnostic and therapeutic techniques

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Optical properties of breast tumor phantoms containing carbon nanotubes and nanohorns

    No full text
    The degree by which optical properties of tumors are altered following introduction of carbon nanotubes (CNTs) of varying concentration and type is poorly understood, making it difficult to predict the impact of CNT inclusion on the photothermal response to laser therapies. Optical properties were measured of phantoms representative of breast tumor tissue incorporated with multiwalled carbon nanotubes (MWNTs), single-walled carbon nanotubes (SWNTs), and single-walled carbon nanohorns (SWNHs) of varying concentration (0.01–0.1 mg/ml). Tissue phantoms were made from sodium alginate (3 g/ml) incorporated with polystyrene microbeads (3 μm diam and 1 mg/ml) and talc-France powder (40 mg/ml). Absorption (μa) and reduced scattering (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}\mu^\prime _s\end{equation*} \end{document}μs′) coefficients of phantoms containing CNTs were determined by the inverse adding-doubling algorithm for the wavelength range of 400–1300 nm. Optical properties of phantoms without CNTs were in the range of μa = 1.04–0.06 mm−1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}\mu^\prime _s\end{equation*} \end{document}μs′ = 0.05–0.07 mm−1 at a wavelength of 900 nm, which corresponds with published data for human breast tumor tissue. Incorporating MWNTs, SWNTs, and SWNHs in phantoms with a concentration of 0.1 mg/ml increased (μa) by 20- to 30-fold, 5- to 6-fold, and 9- to 14-fold, respectively, for the wavelength range of 800–1100 nm with minimal change in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}\mu^\prime _s\end{equation*} \end{document}μs′ (1.2- to 1.3-fold). Introduction of CNTs into tissue phantoms increased absorption, providing a means to enhance photothermal therapy

    Controlled Catheter Movement Affects Dye Dispersal Volume in Agarose Gel Brain Phantoms

    No full text
    The standard of care for treatment of glioblastoma results in a mean survival of only 12 to 15 months. Convection-enhanced delivery (CED) is an investigational therapy to treat glioblastoma that utilizes locoregional drug delivery via a small-caliber catheter placed into the brain parenchyma. Clinical trials have failed to reach their endpoints due to an inability of standard catheters to fully saturate the entire brain tumor and its margins. In this study, we examine the effects of controlled catheter movement on dye dispersal volume in agarose gel brain tissue phantoms. Four different catheter movement control protocols (stationary, continuous retraction, continuous insertion, and intermittent insertion) were applied for a single-port stepped catheter capable of intrainfusion movement. Infusions of indigo carmine dye into agarose gel brain tissue phantoms were conducted during the controlled catheter movement. The dispersal volume (Vd), forward dispersal volume (Vdf), infusion radius, backflow distance, and forward flow distance were quantified for each catheter movement protocol using optical images recorded throughout the experiment. Vd and Vdf for the retraction and intermittent insertion groups were significantly higher than the stationary group. The stationary group had a small but significantly larger infusion radius than either the retracting or the intermittent insertion groups. The stationary group had a greater backflow distance and lower forward flow distance than either the retraction or the intermittent insertion groups. Continuous retraction of catheters during CED treatments can result in larger Vd than traditional stationary catheters, which may be useful for improving the outcomes of CED treatment of glioblastoma. However, catheter design will be crucial in preventing backflow of infusate up the needle tract, which could significantly alter both the Vd and shape of the infusion
    corecore