198 research outputs found

    Will the invasive mussel Mytilus galloprovincialis Lamarck replace the indigenous Perna perna L. on the south coast of South Africa?

    Get PDF
    The mussel Mytilus galloprovincialis is invasive worldwide, has displaced indigenous species on the west coast of South Africa and now threatens Perna perna on the south coast. We tested the hypothesis that Mytilus will replace Perna by examining changes in their distribution on shores where they co-exist. Total cover, adult density, recruit density, recruit/adult correlations and mean maximum lengths of both species were measured in 2001 at two contrasting sites (Plettenberg Bay and Tsitsikamma) 70 km apart, each including two locations 100 m apart. Cover and density were measured again in 2004. Total mussel abundance was significantly lower in Tsitsikamma, and recruit density was only 17% that of Plettenberg Bay. Abundance and cover increased upshore for Mytilus, but decreased for Perna, giving Mytilus higher adult and recruit density and total cover than Perna in the upper zones. Low shore densities of recruits and adults were similar between species but cover was lower for Mytilus, reflecting its smaller size, and presumably slower growth or higher mortality there. Thus, mechanisms excluding species differed among zones. Recruitment limitation delays invasion at Tsitsikamma and excludes Perna from the high shore, while Mytilus is excluded from the low shore by post-recruitment effects. Recruitment limitation also shapes population structure. Recruit/adult correlations were significant only where adult densities were low, and this effect was species-specific. Thus, at low densities, larvae settle or survive better near adult conspecifics. After 3 years, these patterns remained strongly evident, suggesting Mytilus will not eliminate Perna and that co-existence is possible through partial habitat segregation driven by recruitment limitation of Perna on the high shore and post-settlement effects on Mytilus on the low shore

    Effects of patch-size on populations of intertidal limpets, Siphonaria spp., in a linear landscape

    Get PDF
    Organisms with different life-histories and abilities to disperse often utilise habitat patches in different ways. We investigated the influence of the size of patches of rock (separated by stretches of sand) on the density of pulmonate limpets (Siphonaria spp.) along 1500 km of the linear landscape of the South African coastline. We compared the influence of patch-size on two congeneric species with different modes of development, S. serrata a direct developer, and S. concinna a planktonic developer. We tested the spatial and temporal consistency of the effects of patch-size by sampling 7 independent regions spanning the distributional range of both species of limpets, and by sampling one region at monthly intervals for 1 year. Within each region or month, 4 small patches (60 m in length) were sampled. Across the entire geographic range and throughout the year, there were more of both species of limpets in large patches than in small patches. In most regions, there was greater variability in large patches than small patches. Variability within patches in a single region was similar throughout the year, with greater variability of both species in large than in small patches. We found little influence of the mode of development on the response of limpets to patch-size. Our findings highlight the importance of understanding patterns of distribution of species with respect to habitat heterogeneity in linear landscapes, and contradict the idea that organism mobility at an early ontogenetic stage directly affects habitat use

    Biogeographical patterns of endolithic infestation in an invasive and an indigenous intertidal marine ecosystem engineer

    Get PDF
    By altering the phenotypic properties of their hosts, endolithic parasites can modulate the engineering processes of marine ecosystem engineers. Here, we assessed the biogeographical patterns of species assemblages, prevalence and impact of endolithic parasitism in two mussel species that act as important ecosystem engineers in the southern African intertidal habitat, Perna perna and Mytilus galloprovincialis. We conducted large-scale surveys across three biogeographic regions along the South African coast: the subtropical east coast, dominated by the indigenous mussel, P. perna, the warm temperate south coast, where this species coexists with the invasive Mediterranean mussel, M. galloprovincialis, and the cool temperate west coast dominated by M. galloprovincialis. Infestation increased with mussel size, and in the case of M. galloprovincialis we found a significantly higher infestation in the cool temperate bioregion than the warm temperate region. For P. perna, the prevalence of infestation was higher on the warm temperate than the subtropical region, though the difference was marginally non-significant. On the south coast, there was no significant difference in infestation prevalence between species. Endolith-induced mortality rates through shell collapse mirrored the patterns for prevalence. For P. perna, endolith species assemblages revealed clear grouping by bioregions. Our findings indicate that biogeography affects cyanobacteria species composition, but differences between biogeographic regions in their effects are driven by environmental conditions.AgĂȘncia financiadora NĂșmero do subsĂ­dio Fundacao para a Ciencia e Tecnologia (FCT-MEC, Portugal) UID/Multi/04326/2019 IF/01413/2014/CP1217/CT0004 South African Research Chairs Initiative (SARChI) of the Department of Science and Technology National Research Foundationinfo:eu-repo/semantics/publishedVersio

    Mitochondrial DNA paradox: sex-specific genetic structure in a marine mussel despite maternal inheritance and passive dispersal

    Get PDF
    Background: When genetic structure is identified using mitochondrial DNA (mtDNA), but no structure is identified using biparentally-inherited nuclear DNA, the discordance is often attributed to differences in dispersal potential between the sexes. Results: We sampled the intertidal rocky shore mussel Perna perna in a South African bay and along the nearby open coast, and sequenced maternally-inherited mtDNA (there is no evidence for paternally-inherited mtDNA in this species) and a biparentally-inherited marker. By treating males and females as different populations, we identified significant genetic structure on the basis of mtDNA data in the females only. Conclusions: This is the first study to report sex-specific differences in genetic structure based on matrilineally-inherited mtDNA in a passively dispersing species that lacks social structure or sexual dimorphism. The observed pattern most likely stems from females being more vulnerable to selection in habitats from which they did not originate, which also manifests itself in a male-biased sex ratio. Our results have three important implications for the interpretation of population genetic data. First, even when mtDNA is inherited exclusively in the female line, it also contains information about males. For that reason, using it to identify sex-specific differences in genetic structure by contrasting it with biparentally-inherited markers is problematic. Second, the fact that sex-specific differences were found in a passively dispersing species in which sex-biased dispersal is unlikely highlights the fact that significant genetic structure is not necessarily a function of low dispersal potential or physical barriers. Third, even though mtDNA is typically used to study historical demographic processes, it also contains information about contemporary processes. Higher survival rates of males in non-native habitats can erase the genetic structure present in their mothers within a single generation

    Climate change, genetics or human choice: why were the shells of mankind’s earliest ornament larger in the Pleistocene than in the Holocene?

    Get PDF
    The southern African tick shell, Nassarius kraussianus (Dunker, 1846), has been identified as being the earliest known ornamental object used by human beings. Shell beads dated from ~75,000 years ago (Pleistocene era) were found in a cave located on South Africa's south coast. Beads made from N. kraussianus shells have also been found in deposits in this region dating from the beginning of the Holocene era (<10,000 years ago). These younger shells were significantly smaller, a phenomenon that has been attributed to a change in human preference. We investigated two alternative hypotheses explaining the difference in shell size: a) N. kraussianus comprises at least two genetic lineages that differ in size; b) the difference in shell size is due to phenotypic plasticity and is a function of environmental conditions. To test these hypotheses, we first reconstructed the species' phylogeographic history, and second, we measured the shell sizes of extant individuals throughout South Africa. Although two genetic lineages were identified, the sharing of haplotypes between these suggests that there is no genetic basis for the size differences. Extant individuals from the cool temperate west coast had significantly larger shells than populations in the remainder of the country, suggesting that N. kraussianus grows to a larger size in colder water. The decrease in fossil shell size from Pleistocene to Holocene was likely due to increased temperatures as a result of climate change at the beginning of the present interglacial period. We hypothesise that the sizes of N. kraussianus fossil shells can therefore serve as indicators of the climatic conditions that were prevalent in a particular region at the time when they were deposited. Moreover, N. kraussianus could serve as a biomonitor to study the impacts of future climate change on coastal biota in southern Africa

    Photoautotrophic Euendoliths and their complex ecological effects in marine bioengineered ecosystems

    Get PDF
    Photoautotrophic euendolithic microorganisms are ubiquitous where there are calcium carbonate substrates to bore into and sufficient light to sustain photosynthesis. The most diverse and abundant modern euendolithic communities can be found in the marine environment. Euendoliths, as microorganisms infesting inanimate substrates, were first thought to be ecologically irrelevant. Over the past three decades, numerous studies have subsequently shown that euendoliths can colonize living marine calcifying organisms, such as coral skeletons and bivalve shells, causing both sub-lethal and lethal damage. Moreover, under suitable environmental conditions, their presence can have surprising benefits for the host. Thus, infestation by photoautotrophic euendoliths has significant consequences for calcifying organisms that are of particular importance in the case of ecosystems underpinned by calcifying ecosystem engineers. In this review, we address the nature and diversity of marine euendoliths, as revealed recently through genetic techniques, their bioerosive mechanisms, how environmental conditions influence their incidence in marine ecosystems and their potential as bioindicators, how they affect live calcifiers, and the potential future of euendolithic infestation in the context of global climate change and ocean acidificationinfo:eu-repo/semantics/publishedVersio

    Fine scale depth regulation of invertebrate larvae around coastal fronts

    Full text link
    Vertical migrations of zooplankters have been widely described, but their active movements through shallow, highly dynamic water columns within the inner shelf may be more complex and difficult to characterize. In this study, invertebrate larvae, currents, and hydrographic variables were sampled at different depths during and after the presence of fronts on three different cruises off the southern coast of South Africa. Internal wave dynamics were observed in the hydrographic data set but also through satellite imagery, although strong surface convergent currents were absent and thermal stratification was weak. During the first two cruises, fronts were more conspicuous and they preceded strong onshore currents at depth which developed with the rising tide. Vertical distributions of larvae changed accordingly, with higher abundances at these deep layers once the front disappeared. The third cruise was carried out during slack tides, the front was not conspicuous, deep strong onshore currents did not occur afterward and larval distributions did not change consistently through time. Overall, the vertical distributions of many larval taxa matched the vertical profiles of shoreward currents and multivariate analyses revealed that these flows structured the larval community, which was neither influenced by temperature nor chlorophyll. Thus, the ability to regulate active vertical positioning may enhance shoreward advection and determine nearshore larval distributions

    Euendolithic infestation of Mussel Shells indirectly improves the thermal buffering offered by Mussel Beds to associated Molluscs, but one size does not fit all

    Get PDF
    Mussel beds form important intertidal matrices that provide thermal buffering to associated invertebrate communities, especially under stressful environmental conditions. Mussel shells are often colonized by photoautotrophic euendoliths, which have indirect conditional beneficial thermoregulatory effects on both solitary and aggregated mussels by increasing the albedo of the shell. We investigated whether euendolithic infestation of artificial mussel beds (Perna perna) influences the body temperatures of four associated mollusc species during simulated periods of emersion, using shell temperature obtained via non-invasive infrared thermography as a proxy. Shell temperatures of the limpet Scutellastra granularis and the chiton Acanthochitona garnoti were higher in non-infested than infested mussel beds during simulated low tides under high solar irradiance and low wind speeds. However, this was not the case for the limpet Helcion pectunculus or the top shell Oxystele antoni. Morphological differences in mollusc shape and colour could, in part, explain this contrast between species. Our results indicated that endolith-induced improvements in humidity and temperature in mussel beds could benefit associated molluscs. The beneficial thermal buffering offered by euendolithic infestation of the mussel beds was effective only if the organism was under heat stress. With global climate change, the indirect beneficial effect of euendolithic infestation for invertebrate communities associated with mussel beds may mitigate intertidal local extinction events triggered by marine heatwaves.National Research Foundation - South Africa 64801; French National Research Agency (ANR) SAN22202;info:eu-repo/semantics/publishedVersio

    The role of gaping behaviour in habitat partitioning between coexisting intertidal mussels

    Get PDF
    Background Environmental heterogeneity plays a major role in invasion and coexistence dynamics. Habitat segregation between introduced species and their native competitors is usually described in terms of different physiological and behavioural abilities. However little attention has been paid to the effects of behaviour in habitat partitioning among invertebrates, partially because their behavioural repertoires, especially marine benthic taxa, are extremely limited. This study investigates the effect of gaping behaviour on habitat segregation of the two dominant mussel species living in South Africa, the invasive Mytilus galloprovincialis and the indigenous Perna perna. These two species show partial habitat segregation on the south coast of South Africa, the lower and upper areas of the mussel zone are dominated by P. perna and M. galloprovincialis respectively, with overlap in the middle zone. During emergence, intertidal mussels will either keep the valves closed, minimizing water loss and undergoing anaerobic metabolism, or will periodically open the valves maintaining a more efficient aerobic metabolism but increasing the risk of desiccation. Results Our results show that, when air exposed, the two species adopt clearly different behaviours. M. galloprovincialis keeps the shell valves closed, while P. perna periodically gapes. Gaping behaviour increased water loss in the indigenous species, and consequently the risk of desiccation. The indigenous species expressed significantly higher levels of stress protein (Hsp70) than M. galloprovincialis under field conditions and suffered significantly higher mortality rates when exposed to air in the laboratory. In general, no intra-specific differences were observed in relation to intertidal height. The absence of gaping minimises water loss but exposes the invasive species to other stresses, probably related to anoxic respiration. Conclusions Gaping affects tolerance to desiccation, thus influencing the vertical zonation of the two species. Valve closure exposes the invasive species to higher stress and associated energy demands, but it minimizes water loss, allowing this species to dominate the upper mussel zone, where the gaping indigenous P. perna cannot survive. Thus even very simple behaviour can influence the outcome of interactions between indigenous and invasive species
    • 

    corecore