194 research outputs found

    Towards an Airframe Noise Prediction Methodology: Survey of Current Approaches

    Get PDF
    In this paper, we present a critical survey of the current airframe noise (AFN) prediction methodologies. Four methodologies are recognized. These are the fully analytic method, CFD combined with the acoustic analogy, the semi-empirical method and fully numerical method. It is argued that for the immediate need of the aircraft industry, the semi-empirical method based on recent high quality acoustic database is the best available method. The method based on CFD and the Ffowcs William- Hawkings (FW-H) equation with penetrable data surface (FW-Hpds ) has advanced considerably and much experience has been gained in its use. However, more research is needed in the near future particularly in the area of turbulence simulation. The fully numerical method will take longer to reach maturity. Based on the current trends, it is predicted that this method will eventually develop into the method of choice. Both the turbulence simulation and propagation methods need to develop more for this method to become useful. Nonetheless, the authors propose that the method based on a combination of numerical and analytical techniques, e.g., CFD combined with FW-H equation, should also be worked on. In this effort, the current symbolic algebra software will allow more analytical approaches to be incorporated into AFN prediction methods

    Phylomemetics—Evolutionary Analysis beyond the Gene

    Get PDF
    Genes are propagated by error-prone copying, and the resulting variation provides the basis for phylogenetic reconstruction of evolutionary relationships. Horizontal gene transfer may be superimposed on a tree-like evolutionary pattern, with some relationships better depicted as networks. The copying of manuscripts by scribes is very similar to the replication of genes, and phylogenetic inference programs can be used directly for reconstructing the copying history of different versions of a manuscript text. Phylogenetic methods have also been used for some time to analyse the evolution of languages and the development of physical cultural artefacts. These studies can help to answer a range of anthropological questions. We propose the adoption of the term “phylomemetics” for phylogenetic analysis of reproducing non-genetic elements

    Population genomics of the critically endangered kākāpō

    Get PDF
    Summary The kākāpō is a flightless parrot endemic to New Zealand. Once common in the archipelago, only 201 individuals remain today, most of them descending from an isolated island population. We report the first genome-wide analyses of the species, including a high-quality genome assembly for kākāpō, one of the first chromosome-level reference genomes sequenced by the Vertebrate Genomes Project (VGP). We also sequenced and analyzed 35 modern genomes from the sole surviving island population and 14 genomes from the extinct mainland population. While theory suggests that such a small population is likely to have accumulated deleterious mutations through genetic drift, our analyses on the impact of the long-term small population size in kākāpō indicate that present-day island kākāpō have a reduced number of harmful mutations compared to mainland individuals. We hypothesize that this reduced mutational load is due to the island population having been subjected to a combination of genetic drift and purging of deleterious mutations, through increased inbreeding and purifying selection, since its isolation from the mainland ∼10,000 years ago. Our results provide evidence that small populations can survive even when isolated for hundreds of generations. This work provides key insights into kākāpō breeding and recovery and more generally into the application of genetic tools in conservation efforts for endangered species

    Maternal Serologic Screening to Prevent Congenital Toxoplasmosis: A Decision-Analytic Economic Model

    Get PDF
    We constructed a decision-analytic and cost-minimization model to compare monthly maternal serological screening for congenital toxoplasmosis, prenatal treatment, and post-natal follow-up and treatment according to the current French protocol, versus no systematic screening or perinatal treatment. Costs are based on published estimates of lifetime societal costs of developmental disabilities and current diagnostic and treatment costs. Probabilities are based on published results and clinical practice in the United States and France. We use sensitivity analysis to evaluate robustness of results. We find that universal monthly maternal screening for congenital toxoplasmosis with follow-up and treatment, following the French (Paris) protocol, leads to savings of 620perchildscreened.Resultsarerobusttochangesintestcosts,valueofstatisticallife,seroprevalenceinwomenofchildbearingage,fetallossduetoamniocentesis,incidenceofprimaryT.gondiiinfectionduringpregnancy,andtobivariateanalysisoftestcostsandincidenceofprimaryT.gondiiinfection.Giventheparametersinthismodelandamaternalscreeningtestcostof620 per child screened. Results are robust to changes in test costs, value of statistical life, seroprevalence in women of childbearing age, fetal loss due to amniocentesis, incidence of primary T. gondii infection during pregnancy, and to bivariate analysis of test costs and incidence of primary T. gondii infection. Given the parameters in this model and a maternal screening test cost of 12, screening is cost-saving for rates of congenital infection above 1 per 10,000 live births. Universal screening according to the French protocol is cost saving for the US population within broad parameters for costs and probabilities

    Within-sibship genome-wide association analyses decrease bias in estimates of direct genetic effects

    Get PDF
    Estimates from genome-wide association studies (GWAS) of unrelated individuals capture effects of inherited variation (direct effects), demography (population stratification, assortative mating) and relatives (indirect genetic effects). Family-based GWAS designs can control for demographic and indirect genetic effects, but large-scale family datasets have been lacking. We combined data from 178,086 siblings from 19 cohorts to generate population (between-family) and within-sibship (within-family) GWAS estimates for 25 phenotypes. Within-sibship GWAS estimates were smaller than population estimates for height, educational attainment, age at first birth, number of children, cognitive ability, depressive symptoms and smoking. Some differences were observed in downstream SNP heritability, genetic correlations and Mendelian randomization analyses. For example, the within-sibship genetic correlation between educational attainment and body mass index attenuated towards zero. In contrast, analyses of most molecular phenotypes (for example, low-density lipoprotein-cholesterol) were generally consistent. We also found within-sibship evidence of polygenic adaptation on taller height. Here, we illustrate the importance of family-based GWAS data for phenotypes influenced by demographic and indirect genetic effects
    corecore