529 research outputs found
Atom interferometry and the Einstein equivalence principle
The computation of the phase shift in a symmetric atom interferometer in the
presence of a gravitational field is reviewed. The difference of action-phase
integrals between the two paths of the interferometer is zero for any
Lagrangian which is at most quadratic in position and velocity. We emphasize
that in a large class of theories of gravity the atom interferometer permits a
test of the weak version of the equivalence principle (or universality of free
fall) by comparing the acceleration of atoms with that of ordinary bodies, but
is insensitive to that aspect of the equivalence principle known as the
gravitational redshift or universality of clock rates.Comment: 5 pages, to appear in the proceedings of the "46th Rencontres de
Moriond and GPhyS Colloquium on Gravitational Waves and Experimental
Gravity", la Thuile, March 20-27, 201
Does an atom interferometer test the gravitational redshift at the Compton frequency ?
Atom interferometers allow the measurement of the acceleration of freely
falling atoms with respect to an experimental platform at rest on Earth's
surface. Such experiments have been used to test the universality of free fall
by comparing the acceleration of the atoms to that of a classical freely
falling object. In a recent paper, M\"uller, Peters and Chu [Nature {\bf 463},
926-929 (2010)] argued that atom interferometers also provide a very accurate
test of the gravitational redshift when considering the atom as a clock
operating at the Compton frequency associated with the rest mass. We analyze
this claim in the frame of general relativity and of different alternative
theories. We show that the difference of "Compton phases" between the two paths
of the interferometer is actually zero in a large class of theories, including
general relativity, all metric theories of gravity, most non-metric theories
and most theoretical frameworks used to interpret the violations of the
equivalence principle. Therefore, in most plausible theoretical frameworks,
there is no redshift effect and atom interferometers only test the universality
of free fall. We also show that frameworks in which atom interferometers would
test the redshift pose serious problems, such as (i) violation of the Schiff
conjecture, (ii) violation of the Feynman path integral formulation of quantum
mechanics and of the principle of least action for matter waves, (iii)
violation of energy conservation, and more generally (iv) violation of the
particle-wave duality in quantum mechanics. Standard quantum mechanics is no
longer valid in such frameworks, so that a consistent interpretation of the
experiment would require an alternative formulation of quantum mechanics. As
such an alternative has not been proposed to date, we conclude that the
interpretation of atom interferometers as testing the gravitational redshift is
unsound.Comment: 26 pages. Modified version to appear in Classical and Quantum Gravit
Pioneer 10 data analysis: Investigation on periodic anomalies
International audienceThe Pioneer Anomaly refers to the difference between the expected theoretical tra jectory of the Pioneer 10 and 11 spacecrafts and the observed tra jectory through Doppler measurements. It has been interpreted by the Jet Propulsion Laboratory (JPL) as a constant anomalous acceleration (Anderson et al. 2002). For this analysis, the Groupe Anomalie Pioneer (GAP) composed of several french laboratories has developped a specific tra jectography software, ODYSSEY, which enables to test different anomaly models. The paper will present, after a brief description of the software and the implemented models, the last results obtained: in addition to the constant anomaly, time dependent signatures of the anomaly have been noticed which can be described geometrically. The fit of the Pioneer 10 data with these new models yields a reduction of the standard deviation of the residual by a factor 2 with respect to the simple constant anomaly
Pioneer 10 Doppler data analysis: disentangling periodic and secular anomalies
This paper reports the results of an analysis of the Doppler tracking data of
Pioneer probes which did show an anomalous behaviour. A software has been
developed for the sake of performing a data analysis as independent as possible
from that of J. Anderson et al. \citep{anderson}, using the same data set. A
first output of this new analysis is a confirmation of the existence of a
secular anomaly with an amplitude about 0.8 nms compatible with that
reported by Anderson et al. A second output is the study of periodic variations
of the anomaly, which we characterize as functions of the azimuthal angle
defined by the directions Sun-Earth Antenna and Sun-Pioneer. An
improved fit is obtained with periodic variations written as the sum of a
secular acceleration and two sinusoids of the angles and .
The tests which have been performed for assessing the robustness of these
results are presented.Comment: 13 pages, 6 figures, minor amendment
Occurrence of the Israel strain of Tomato yellow leaf curl virus and the whitefly Bemisia tabaci MEAM1 species in French Polynesia
Graphene-based textured surface by pulsed laser deposition as a robust platform for surface enhanced Raman scattering applications
International audienceWe have developed a surface enhanced Raman scattering (SERS)-active substrate based on gold nanoparticles-decorated few-layer (fl) graphene grown by pulsed laser deposition. Diamond-Like Carbon film has been converted to fl-graphene after thermal annealing at low temperature. The formation of fl-graphene was confirmed by Raman spectroscopy, and surface morphology was highlighted by scanning electron microscopy. We found that textured fl-graphene film with nanoscale roughness was highly beneficial for SERS detection. Rhodamine 6G and p-aminothiophenol proposed as test molecules were detected with high sensitivity. The detection at low concentration of deltamethrin, an active molecule of a commercial pesticide was further demonstrated
Genetic diversity of Bemisia tabaci species colonizing cassava in Central African Republic characterized by analysis of cytochrome c oxidase subunit I
After 2007, upsurges of whiteflies on cassava plants and high incidences of cassava diseases were observed in Central African Republic. This recent upsurge in the abundance of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) was directly linked to serious damage to cassava crops resulting from spread of whitefly-borne cassava mosaic geminiviruses (CMGs). There is currently very little information describing whitefly populations on cassava and associated crops in Central African Republic. The current study aimed to address this gap, and to determine whether the increasing damage associated with B. tabaci whiteflies was the consequence of a new invasion, or an upsurge of a local population. The molecular genetic identification and phylogenetic relationships of 898 B. tabaci adult individuals collected from representative locations (54) throughout CAR were determined based on their mitochondrial cytochrome oxidase I sequences (mtCOI). Field and ecological data were also collected from each site, including whitefly abundance, CMD incidence, host plants colonized by B. tabaci and agro-ecological zone. Phylogenetic analysis of the whitefly mtCOI sequences indicated that SSA1 (-SG1, -SG2), SSA3, MED, MEAM1 and Indian Ocean (IO) putative species occur in CAR. One specific haplotype of SSA1-SG1 (SSA1-SG1-P18F5) predominated on most cassava plants and at the majority of sites. This haplotype was identical to the SSA1-SG1 Mukono8-4 (KM377961) haplotype that was recorded from Uganda but that also occurs widely in CMD pandemic-affected areas of East Africa. These results suggest that the SSA1-SG1-P18F5 haplotype occurring in CAR represents a recent invasive population, and that it is the likely cause of the increased spread and severity of CMD in CAR. Furthermore, the high mtDNA sequence diversity observed for SSA1 and its broad presence on all sites and host plants sampled suggest that this genetic group was the dominant resident species even before the arrival of this new invasive haplotype
- …
