248 research outputs found

    Fitting multiplicative models by robust alternating regressions.

    Get PDF
    In this paper a robust approach for fitting multiplicative models is presented. Focus is on the factor analysis model, where we will estimate factor loadings and scores by a robust alternating regression algorithm. The approach is highly robust, and also works well when there are more variables than observations. The technique yields a robust biplot, depicting the interaction structure between individuals and variables. This biplot is not predetermined by outliers, which can be retrieved from the residual plot. Also provided is an accompanying robust R-2-plot to determine the appropriate number of factors. The approach is illustrated by real and artificial examples and compared with factor analysis based on robust covariance matrix estimators. The same estimation technique can fit models with both additive and multiplicative effects (FANOVA models) to two-way tables, thereby extending the median polish technique.Alternating regression; Approximation; Biplot; Covariance; Dispersion matrices; Effects; Estimator; Exploratory data analysis; Factor analysis; Factors; FANOVA; Least-squares; Matrix; Median polish; Model; Models; Outliers; Principal components; Robustness; Structure; Two-way table; Variables; Yield;

    Robust factor analysis.

    Get PDF
    Our aim is to construct a factor analysis method that can resist the effect of outliers. For this we start with a highly robust initial covariance estimator, after which the factors can be obtained from maximum likelihood or from principal factor analysis (PFA). We find that PFA based on the minimum covariance determinant scatter matrix works well. We also derive the influence function of the PFA method based on either the classical scatter matrix or a robust matrix. These results are applied to the construction of a new type of empirical influence function (EIF), which is very effective for detecting influential data. To facilitate the interpretation, we compute a cutoff value for this EIF. Our findings are illustrated with several real data examples. (C) 2003 Elsevier Science (USA). All rights reserved.Construction; Covariance determinant estimator; Data; Factor analysis; Factors; Influence function; Matrix; Maximum likelihood; Model; Multivariate analysis; Multivariate location; Outlier detection; Outliers; Principal component analysis; Robust estimation; Scatter; Scatter matrix; Science; Value;

    Eur Respir J

    Get PDF
    Omalizumab is a monoclonal anti-IgE antibody used to treat severe allergic asthma (SAA). The aim of the STELLAIR study was to determine the importance of pre-treatment blood eosinophil count as a predictive measure for response to omalizumab.This retrospective real-life study was conducted in France between December 2015 and September 2016 using medical records of SAA omalizumab-treated patients. Response to omalizumab was assessed by three criteria: physician evaluation, reduction of >/=40% in annual exacerbation rate and a combination of both. Response rate was calculated according to blood eosinophil count measured in the year prior to omalizumab initiation.872 SAA omalizumab-treated patients were included by 78 physicians (723 adults (age >/=18 years) and 149 minors (age 6-17 years)). Blood eosinophil count was >/=300 cells.microL(-1) in 52.1% of adults and 73.8% of minors. By physician evaluation, 67.2% of adults and 77.2% of minors were responders and 71.1% adults and 78.5% minors had a >/=40% reduction in the exacerbation rate. In adults, the response rate for combined criteria was 58.4% (95% CI 53.2-63.4%) for blood eosinophils >/=300 cells.microL(-1) (n=377) and 58.1% (95% CI 52.7-63.4%) for blood eosinophils /=300 cells.microL(-1), and suggests that omalizumab effectiveness is similar in "high" and "low" eosinophil subgroups

    Impact of geocoding methods on associations between long-term exposure to urban air pollution and lung function

    Get PDF
    Background: Errors in address geocodes may affect estimates of the effects of air pollution on health.Objective: We investigated the impact of four geocoding techniques on the association between urban air pollution estimated with a fine-scale (10 m × 10 m) dispersion model and lung function in adults.Methods: We measured forced expiratory volume in 1 sec (FEV1) and forced vital capacity (FVC) in 354 adult residents of Grenoble, France, who were participants in two well-characterized studies, the Epidemiological Study on the Genetics and Environment on Asthma (EGEA) and the European Community Respiratory Health Survey (ECRHS). Home addresses were geocoded using individual building matching as the reference approach and three spatial interpolation approaches. We used a dispersion model to estimate mean PM10 and nitrogen dioxide concentrations at each participant's address during the 12 months preceding their lung function measurements. Associations between exposures and lung function parameters were adjusted for individual confounders and same-day exposure to air pollutants. The geocoding techniques were compared with regard to geographical distances between coordinates, exposure estimates, and associations between the estimated exposures and health effects.Results: Median distances between coordinates estimated using the building matching and the three interpolation techniques were 26.4, 27.9, and 35.6 m. Compared with exposure estimates based on building matching, PM10 concentrations based on the three interpolation techniques tended to be overestimated. When building matching was used to estimate exposures, a one-interquartile range increase in PM10 (3.0 μg/m3) was associated with a 3.72-point decrease in FVC% predicted (95% CI: -0.56, -6.88) and a 3.86-point decrease in FEV1% predicted (95% CI: -0.14, -3.24). The magnitude of associations decreased when other geocoding approaches were used [e.g., for FVC% predicted -2.81 (95% CI: -0.26, -5.35) using NavTEQ or 2.08 (95% CI -4.63, 0.47, p = 0.11) using Google Maps].Conclusions: Our findings suggest that the choice of geocoding technique may influence estimated health effects when air pollution exposures are estimated using a fine-scale exposure model.Citation: Jacquemin B, Lepeule J, Boudier A, Arnould C, Benmerad M, Chappaz C, Ferran J, Kauffmann F, Morelli X, Pin I, Pison C, Rios I, Temam S, Künzli N, Slama R, Siroux V. 2013. Impact of geocoding methods on associations between long-term exposure to urban air pollution and lung function. Environ Health Perspect 121:1054-1060; http://dx.doi.org/10.1289/ehp.1206016

    Crossover Patient Outcomes for Targeted Lung Denervation in Moderate to Severe Chronic Obstructive Pulmonary Disease:AIRFLOW-2

    Get PDF
    BACKGROUND: Targeted Lung Denervation (TLD) is a potential new therapy for COPD. Radiofrequency energy is bronchoscopically delivered to the airways to disrupt pulmonary parasympathetic nerves, to reduce bronchoconstriction, mucus hypersecretion, and bronchial hyperreactivity. OBJECTIVES: This work assesses the effect of TLD on COPD exacerbations (AECOPD) in crossover subjects in the AIRFLOW-2 trial. METHOD: The AIRFLOW-2 trial is a multicentre, randomized, double-blind, sham-controlled crossover trial of TLD in COPD. Patients with symptomatic COPD on optimal medical therapy with an FEV1 of 30-60% predicted received either TLD or sham bronchoscopy in a 1:1 randomization. Those in the sham arm had the opportunity to cross into the treatment arm after 12 months. The primary end point was rate of respiratory adverse events. Secondary end points included adverse events, changes in lung function and health-related quality of life and symptom scores. RESULTS: Twenty patients were treated with TLD in the crossover phase and were subsequently followed up for 12 months (50% female, mean age 64.1 ± 6.9 years). After TLD, there was a trend towards a reduction in time to first AECOPD (hazard ratio 0.65, p = 0.28, not statistically significant) in comparison to sham follow-up period. There was also a reduction in time to first severe AECOPD in the crossover period (hazard ratio 0.38, p = 0.227, not statistically significant). Symptom scores and lung function showed stability. CONCLUSIONS: AIRFLOW-2 crossover data support that of the randomization phase, showing trends towards reduction in COPD exacerbations with TLD

    Safety of denervation following targeted lung denervation therapy for COPD:AIRFLOW-1 3-year outcomes

    Get PDF
    Background Targeted lung denervation (TLD) is a novel bronchoscopic therapy that disrupts parasympathetic pulmonary nerve input to the lung reducing clinical consequences of cholinergic hyperactivity. The AIRFLOW-1 study assessed safety and TLD dose in patients with moderate-to-severe, symptomatic COPD. This analysis evaluated the long-term impact of TLD on COPD exacerbations, pulmonary function, and quality of life over 3 years of follow up. Methods TLD was performed in a prospective, energy-level randomized (29 W vs 32 W power), multicenter study (NCT02058459). Additional patients were enrolled in an open label confirmation phase to confirm improved gastrointestinal safety after procedural modifications. Durability of TLD was evaluated at 1, 2, and 3 years post-treatment and assessed through analysis of COPD exacerbations, pulmonary lung function, and quality of life. Results Three-year follow-up data were available for 73.9% of patients (n = 34). The annualized rate of moderate to severe COPD exacerbations remained stable over the duration of the study. Lung function (FEV1, FVC, RV, and TLC) and quality of life (SGRQ-C and CAT) remained stable over 3 years of follow-up. No new gastrointestinal adverse events and no unexpected serious adverse events were observed. Conclusion TLD in COPD patients demonstrated a positive safety profile out to 3 years, with no late-onset serious adverse events related to denervation therapy. Clinical stability in lung function, quality of life, and exacerbations were observed in TLD treated patients over 3 years of follow up

    Assessing Adherence to Healthy Dietary Habits Through the Urinary Food Metabolome:Results From a European Two-Center Study

    Get PDF
    BACKGROUND: Diet is one of the most important modifiable lifestyle factors in human health and in chronic disease prevention. Thus, accurate dietary assessment is essential for reliably evaluating adherence to healthy habits. OBJECTIVES: The aim of this study was to identify urinary metabolites that could serve as robust biomarkers of diet quality, as assessed through the Alternative Healthy Eating Index (AHEI-2010). DESIGN: We set up two-center samples of 160 healthy volunteers, aged between 25 and 50, living as a couple or family, with repeated urine sampling and dietary assessment at baseline, and 6 and 12 months over a year. Urine samples were subjected to large-scale metabolomics analysis for comprehensive quantitative characterization of the food-related metabolome. Then, lasso regularized regression analysis and limma univariate analysis were applied to identify those metabolites associated with the AHEI-2010, and to investigate the reproducibility of these associations over time. RESULTS: Several polyphenol microbial metabolites were found to be positively associated with the AHEI-2010 score; urinary enterolactone glucuronide showed a reproducible association at the three study time points [false discovery rate (FDR): 0.016, 0.014, 0.016]. Furthermore, other associations were found between the AHEI-2010 and various metabolites related to the intake of coffee, red meat and fish, whereas other polyphenol phase II metabolites were associated with higher AHEI-2010 scores at one of the three time points investigated (FDR < 0.05 or β ≠ 0). CONCLUSION: We have demonstrated that urinary metabolites, and particularly microbiota-derived metabolites, could serve as reliable indicators of adherence to healthy dietary habits. CLINICAL TRAIL REGISTRATION: www.ClinicalTrials.gov, Identifier: NCT03169088

    Long-term safety of bilateral targeted lung denervation in patients with COPD

    Get PDF
    Background: Targeted lung denervation (TLD) is a novel bronchoscopic therapy for COPD which ablates parasympathetic pulmonary nerves running along the outside of the two main bronchi with the intent of inducing permanent bronchodilation. The goal of this study was to evaluate the feasibility and long-term safety of bilateral TLD during a single procedure. Patients and methods: This prospective, multicenter study evaluated 15 patients with moderate-to-severe COPD (forced expiratory volume in 1 s [FEV1] 30%-60%) who underwent bilateral TLD treatment following baseline assessment without bronchodilators. The primary safety end point was freedom from documented and sustained worsening of COPD directly attributable to TLD up to 1 year. Secondary end points included technical feasibility, change in pulmonary function tests, exercise capacity, and health-related quality of life. Follow-up continued up to 3 years for subjects who reconsented for longer-term follow-up. Results: A total of 15 patients (47% male, age 63.2 +/- 4.0 years) underwent TLD with a total procedure time of 89 +/- 16 min, and the total fluoroscopy time was 2.5 +/- 2.7 min. Primary safety end point of freedom from worsening of COPD was 100%. There were no procedural complications reported. Results of lung function analysis and exercise capacity demonstrated similar beneficial effects of TLD without bronchodilators, when compared with long-acting anticholinergic therapy at 30 days, 180 days, 365 days, 2 years, and 3 years post-TLD. Five of the 12 serious adverse events that were reported through 3 years of follow-up were respiratory related with no events being related to TLD therapy. Conclusion: TLD delivered to both lungs in a single procedure is feasible and safe with few respiratory-related adverse events through 3 years

    Two-Year Outcomes for the Double-Blind, Randomized, Sham-Controlled Study of Targeted Lung Denervation in Patients with Moderate to Severe COPD:AIRFLOW-2

    Get PDF
    Purpose: COPD exacerbations are associated with worsening clinical outcomes and increased healthcare costs, despite use of optimal medical therapy. A novel bronchoscopic therapy, targeted lung denervation (TLD), which disrupts parasympathetic pulmonary innervation of the lung, has been developed to reduce clinical consequences of cholinergic hyperactivity and its impact on COPD exacerbations. The AIRFLOW-2 study assessed the durability of safety and efficacy of TLD additive to optimal drug therapy compared to sham bronchoscopy and optimal drug therapy alone in subjects with moderate-to-severe, symptomatic COPD two years post randomization. Patients and Methods: TLD was performed in COPD patients (FEV1 30-60% predicted, CAT≥10 or mMRC≥2) in a 1:1 randomized, sham-controlled, double-blinded multicenter study (AIRFLOW-2) using a novel lung denervation system (Nuvaira, Inc., USA). Subjects remained blinded until their 12.5-month follow-up visit when control subjects were offered the opportunity to undergo TLD. A time-to-first-event analysis on moderate and severe and severe exacerbations of COPD was performed. Results: Eighty-two subjects (FEV1 41.6±7.4% predicted, 50.0% male, age 63.7±6.8 yrs, 24% with prior year respiratory hospitalization) were randomized. Time-to-first severe COPD exacerbation was significantly lengthened in the TLD arm (p=0.04, HR=0.38) at 2 years post-TLD therapy and trended towards similar attenuation for moderate and severe COPD exacerbations (p=0.18, HR=0.71). No significant changes in lung function or SGRQ-C were found 2 years post randomization between groups. Conclusion: In a randomized trial, TLD demonstrated a durable effect of significantly lower risk of severe AECOPD over 2 years. Further, lung function and quality of life remained stable following TLD. Clinical Trial Registration: NCT02058459
    corecore