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Abstract

Our aim is to construct a factor analysis method that can resist the effect of out-
liers. For this we start with a highly robust initial covariance estimator, after which
the factors can be obtained from maximum likelihood or from principal factor analy-
sis (PFA). We find that PFA based on the minimum covariance determinant scatter
matrix works well. We also derive the influence function of the PFA method based
on either the classical scatter matrix or a robust matrix. These results are applied
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1 Introduction

Factor analysis is a popular multivariate technique. Its goal is to approximate the p original
variables of the dataset by linear combinations of a smaller number £ of latent variables,
called factors. This must be done in such a way that the covariance matrix (or the correlation
matrix) of the p original variables is fitted well. The factor analysis model contains many
parameters, including the specific variances of the error components.

The assumptions underlying the factor analysis model are rather strong compared to
its applications. Therefore many authors have investigated whether these assumptions are
necessary. It was already shown that the classical estimates have good asymptotic properties
under some weaker assumptions (see e.g. Browne and Shapiro 1988, Mooijaart and Bentler
1991).

The classical technique starts by computing the usual sample covariance matrix or the
sample correlation matrix, followed by a second step which decomposes this matrix accord-
ing to the model. This approach is not robust to outliers in the data, since they already
have a large effect on the first step. In Section 2 we therefore construct a robust factor
analysis method, which in the first step computes a highly resistant scatter matrix such as
the minimum covariance determinant (MCD) estimator (Rousseeuw 1985). In the context of
structural equation models, Yuan and Bentler (1998a, 1998b) used M-estimators (Maronna
1976) and S-estimators (Davies 1987, Rousseeuw and Leroy 1987) and minimized the re-
sulting Wishart likelihood function. For the second step several methods are available, such
as maximum likelihood estimation and the principal factor analysis method (PFA). The
simulations in Section 3 yield a slight preference for the latter.

In order to study the robustness of the PFA method we compute its influence function
(the complete derivation can be found in the Appendix). The influence function depends,
among other things, on the scatter matrix estimator of the first step. Section 4 plots the
influence function of PFA based on the classical covariance matrix and compares it with that
based on the MCD. The latter influence function is bounded. We also study the influence
function of PFA applied to the robust correlation matrix derived from the MCD, and find
that the influence of a far outlier becomes exactly zero.

Not all outliers have a large influence on the factor analysis. In order to detect influential
data points we construct an empirical influence function (EIF) in Section 4.2. We argue that

the most informative version is the EIF of the classical PFA, but evaluated in the distribution



characterized by the robust estimates of location and scatter. Moreover, we compute a cutoff
value for the EIF to tell us when a data point is truly influential. Section 5 illustrates the

robust approach on two real data examples.

2 The Factor Analysis Model

Classical factor analysis tries to describe the correlation matrix p or the covariance matrix
% between the original variables X;, X5, ..., X, by a small number £ < p of new variables
®q,..., P, called factors. These factors are unobservable. In particular, the orthogonal

factor analysis model says that
X-—p=Ad+e¢ (2.1)

where X = (X1,...,X,), = (i1,-.., )" is the mean vector, A € IRP** is the matrix
of factor loadings, ® = (®y,...,P;)", and the error term is € = (£1,...,£,)". Note that
the matrix A is only determined up to right multiplication by an orthogonal matrix U.
We assume that the random vectors ® and € are independent, E(®) = 0, Cov(®) = I,
E(e) =0 and Couv(e) = diag(¥) with ¥ = (¢)1,...,,) € IRP. Under these assumptions we

obtain

Y = AA'+ diag(®). (2.
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Because of the number of parameters in this model, for a given p the largest possible & is

[p+ 0.5 — \/2p + 0.25]

(see, e.g., Johnson and Wichern 1998, page 538) where |...] stands for the integer part of a
real number. For instance, for 5-variate X we can estimate up to 2 factors.

In practice, we have a data set with n objects in p dimensions. The classical factor analysis
method computes the sample mean vector T to estimate g, and the sample covariance
matrix S} to estimate ¥. (Throughout, the superscript ¢ stands for classical, i.e. based
on Gaussian distributions.) Afterwards a decomposition like (2.2) is carried out to obtain
an estimate L, for A and an estimate P, for ¥, thereby yielding an estimate F',, for &.
Many methods have been proposed for this decomposition, of which the maximum likelihood

estimator (MLE) and the principal factor analysis (PFA) algorithms are the most frequently
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used (see e.g., Basilevsky 1994). The MLE method minimizes the log-likelihood function
L(A,®) = c[—In|AA + diag(®)| + tr[S(AA! + diag(¥))™!]

with ¢ some constant (see Joreskog 1963). For S we can use S¢ in the classical case and
S’ in the robust method. The principal factor analysis is based on eigenvalue/eigenvector
analysis of the reduced covariance matrix, so here again we use S in the classical case and
S, in the robust method.

Since these methods cannot resist the effect of outliers, we propose to start from a more
robust location vector and scatter matrix. It is convenient to use the Minimum Covariance
Determinant Estimator (MCD) of Rousseeuw (1984, 1985). The MCD looks for that h-subset
of the data with the smallest determinant of its covariance matrix. Typically, h = 3n/4. The
MCD location T, is then the average of the h points in that subset, and the MCD scatter
estimate S is a multiple of their covariance matrix. (Throughout, the superscript r stands
for robust.) The MCD is highly robust and converges at a faster rate than the previously
popular Minimum Volume Ellipsoid (MVE) estimator. Moreover, the MCD can now be
computed very quickly with the new algorithm of Rousseeuw and Van Driessen (1999).

The resulting robust loadings L] and specific variances P; will be different from the
classical L; and P;. Because the classical scatter matrix S is influenced by outlying data
points, this is also the case for the resulting loadings L;, the specific variances P;, and the
factor scores F',,. On the other hand, the MCD scatter matrix is robust to outliers, so it

allows us to obtain robust factors F'; which describe the correlation or covariance between

the uncontaminated data. Let us look at a first example to illustrate this.

Example 1. The aircraft data set (Gray 1985) consists of n = 23 single-engine aircraft
built in the years 1947-1979. The p = 5 variables are the aspect ratio, lift-to-drag ratio,
weight of the plane, maximal thrust, and cost. Applying the MCD to these data indicates
that cases 14 and 22 are outliers. Plane 22 was the F-111 aircraft. It was built to suit
the needs of the Army, the Navy and the Air Force simultaneously. At that time, it was
the most sophisticated, fastest, heaviest and most costly single-engine jet plane ever built.
Nevertheless it had many technical problems. Plane 14 was the F-104A ‘Starfighter’ which
had a huge lift-to-drag ratio.

Let us now estimate k = 2 factors. Applying the principal factor (PFA) method to

the classical correlation matrix yields the biplot in Figure 1a. The biplot in Figure 1b was
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Figure 1: Biplots of (a) classical, and (b) robust factor analysis on the aircraft data set. The

two outlying planes (14 and 22) are underlined.

obtained by applying PFA to the MCD-based robust correlation matrix R;, computed as
R,=DS,D with D =diag(((S,);,))""* ..., ((55),,) ") (2.3)

In the biplot (Gabriel 1971) the arrows indicate the positions of the variables by plotting
(Lj1,Lj2) for j =1,...,p. The observations (Fj;, Fj2) are also added on the plot. The main
idea is that the biplot represents the general interaction structure between the variables and
the observations. More details on biplots can be found in Gower and Hand (1996).

The main difference between the two methods is that in the classical factor analysis the

C
n’

two outliers highly influence S, L., and F¢. So, also the classical biplot was influenced
by these outliers. The robust factor analysis downweights these outliers, and gives a more
reliable picture of the majority of the data. In this case the robust biplot represents the
structure of the good observations and therefore this biplot ressembles the usual biplot
based on the clean data. Let us compare the loadings of the classical and the robust factor
analysis in Table 1. In the classical case, factor 1 was mainly a combination of variables
1 (with negative coefficient), 3, 4, and 5, and factor 2 was mostly determined by variable

2. In the robust factor analysis, factor 1 is a positive combination of variables 2, 3, and 4,

whereas factor 2 essentially combines variables 1 and 5 (with different signs). We also see
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Table 1: Loadings of classical and robust factor analysis on the aircraft data set.

Loadings of Classical FA Loadings of Robust FA

Variable Factor 1 Factor 2 Factor 1 Factor 2
X1: Aspect Ratio -0.710 0.000 -0.165 -0.898
X2: Lift-to-Drag  0.157 0.672 0.981 0.110
X3: Weight 0.932 0.306 0.849 0.513
X4: Thrust 0.807 0.485 0.783 0.523
X5: Cost 0.818 0.244 0.580 0.679

that the second picture in Figure 1 is not simply a rotation of the first. In this example, the

two methods give a quite different result.

3 Empirical Study

In this section we carry out empirical studies with outliers, to investigate their effect on
classical and robust factor analysis. First we carry out a sensitivity analysis, and then a

Monte Carlo experiment.

3.1 Sensitivity Analysis

We investigate the sensitivity of factor analysis to outliers and small errors. We will compare
the sensitivity of classical maximum likelihood estimation (CLAS.MLE), principal factor
analysis (CLAS.PFA), and their MCD-based versions on the stock price data set of (Johnson
and Wichern 1998), with n = 100 observations and p = 5 variables. The stock price data
set X© contains the weekly returns of five stocks listed on the New York Stock Exchange.
The data are standardized by subtracting the average of each variable and dividing by its
standard deviation.

We first estimate k£ = 2 factors based on the classical and robust correlation matrices,
yielding the loadings L” ¢ IR**? and unique variances P7(10) = (PI(O), .. .,P5(0)). For the
sensitivity analysis we add a noise matrix (err®)) and a matrix (zout®)) which causes 1y

data points to become outliers. The elements of the noise matrix are distributed according



to N(0,(0.05)%). The outlier matrix xout® is mainly zero, except for ny, elements. We
generate only one outlying entry per outlying object. For this we randomly choose 714,
different rows in zout'®, and for each such row we choose a random entry. In these gy
entries of zout we put values generated from the normal distribution N (10, (0.05)?).

The disturbed data sets X ) are thus generated as
X = XO 4 err® 1 zout®

for s = 1,...,m. Fitting this model yields estimates L' and P for m = 1000 simu-
lated samples. The method for estimating the factor model was of course the same for the
contaminated data as for the original data.

The estimates from the disturbed and the original data are compared in the following
way. Since the loadings matrix is only determined up to an orthogonal matrix, we consider
the p x p matrix A = L& (L)t instead. More precisely, we compare the elements al(;) of
A" with the undisturbed entries ag-)) of the matrix A = LO(L®)t. For this we compute

2]

the mean squared error (MSE), bias (BIAS), and variance (VAR) of the estimates as

MSBlas) = 33 (a) - o)’
s=1
1 =/ (s
BIAS(a;j) = p- Z (al(j) — af?)
s=1
2
1 — 1 —
VAR(a;) = — (E“’f)—— ?’)
CLJ m; a] m;aj

for 7,7 =1,...,p, and we define the average MSE as MSE(A) = 1% S 2 MSE(as).

Similarly, for the square root of the unique variances P; we compute

MSE(P;) = %i( [P _ /P}O)>2
s=1
BIAS(P) = %i(,/pj(s)_ /]ngo'>>
s=1
2
1 & . 1 &
L3 (Ve L)

where j = 1,...,p and the average MSE is given by MSE(P) = % "_1 MSE(P;). However,

VAR(P;))

it is well-known that the MLE and PFA methods may sometimes produce a negative estimate
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Figure 2: Sensitivity of factor analysis on the stock price data: (a) MSE(A) versus the
fraction of outliers; (b) MSE(P) versus the fraction of outliers.

Pj(s). This is the so-called Heywood case (see Ten Berge and Kiers 1991, Kano 1998). In our
simulation such negative Pj(s) occurred only a few times, with small values of |Pj(s)|, S0 we
have set these negative Pj(s) equal to zero.

For the stock price data, Figure 2 shows the average MSE versus the fraction of outliers
(here, 0% to 20%). We can see that the MSE’s of factor analysis based on the classical
correlation matrix are much higher than those based on the robust correlation matrix using
the MCD method. The fact that using a classical correlation matrix yields a higher MSE
than using a more robust scatter matrix confirms the simulation of Kosfeld (1996) who
inserted M-estimators of covariance. In Figure 2, MCDA50 stands for the MCD estimator
with h = 0.5*n, and MCD75 corresponds to h = 0.75xn. Comparing MCD50 and MCD75,
we find that a factor analysis using MCD75 systematically yielded a lower MSE than the
corresponding method based on MCD50. For other data sets, real and generated, we found

similar results. Because MCD75 also has a higher efficiency than MCD50, we will work with
MCD75 from now on.

3.2 Monte Carlo study

Here we do not start from a given data set but from fixed parameter values, i.e. an n X k
matrix A and a p x p diagonal matrix diag(¥). (The entries of A were generated from

N(0, 5) and those of diag(¥) from the uniform distribution on the interval [0, 1].) Then we
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Figure 3: Simulation study: (a) MSE(A) versus the fraction of outliers; (b) MSE(P)

versus the fraction of outliers.

construct data sets X®) according to the factor analysis model (2.1), i.e.
X = ABE + & 4 Out®.

For each s we generated the k x p matrix of factor scores ®*) from N(0,1), and the entries
()

g;; of the noise term e(®) are distributed according to N(0, ;). The outlying term Out®
was generated as in the previous subsection.

Fitting the factor analysis model to the generated data X (s) gives the estimates LS) and
Pff) for s =1,...,m = 1000 simulated samples. These estimates are compared to the true
A and ¥ by computing the MSE, BIAS and VAR.

For the simulations in Figure 3 we took n = 100, p = 5, and k£ = 2. We see that the
robust factor analysis based on MCD75 and the principal factor method gave the smallest
mean squared error. Maximum likelihood estimation gave larger errors in all our simulations

(also for other n and p). This parallels the results in Figure 2. Therefore, from now on we

will focus on the MCD75.PFA technique.

4 The Influence Function of PFA

4.1 The Theoretical Influence Function

We now dcerive the theoretical influcnce function of the Principal Factor Analysis method.

The influence function (see Hampel et al. 1986) of a functional Q at a distribution H

9



measures the effect on Q of adding a small mass at z. If we denote the point mass at x by

A, and write Hy = (1 — ¢t)H + t/AA, then the influence function is given by

IF(z,Q,H) = % (Hy)li=o-

In order to apply this we need the functional form of the PFA estimator. Let H be
an arbitrary distribution on IRP with location estimate T'(H) € IRP and scatter estimate
S(H) € IRP*?. We will denote the PFA functional as (A(H), P(H)) where A(H) € IRP*?
is a positive semidefinite matrix with rank at most k, and P(H) is a vector in IR” with

nonnegative components. The fitted scatter matrix is then
A(H) + diag(P(H)).

The PFA functional is defined as the pair (A(H), P(H)) that gives the closest fit to the
observed S(H). Formally,

(A(H), P(H)) = agmgnz Y _((S(H))i; — (A + diag(P));;)?

P) =1 =1

= argmin trace ((S(H) — A — diag(P))(S(H) — A — diag(P))"). (4.1)

(A.P)
So we use a least squares criterion to measure the closeness between S(H) and A + diag(P).
Alternatively, one could use weighted least squares or a likelihood criterium here. Such an
approach would of course yield an estimator different from the PFA-solution.

The spectral decomposition of A(H) yields

k

A(H) = ) A(H)v(H)v;(H) (4.2)
j=1
with eigenvalues A;(H) > 0 and orthonormal eigenvectors v;(H) for j = 1,..., k. Minimizing

(4.1) yields two first order equations:

(S(H) — diag(P(H)))v;(H) = X;(H)v;(H) (4.3)
Pi(H) = Sj(H) =) N(H)j(H). (4.4)

Any solution (A(H), P(H)) of the above equations yields as value for the objective func-
tion of (4.1) the sum of the (p — k) eigenvalues of S(H) — diag(P(H)) different from
M(H), ..., \x(H). At the global minimum this value reduces to the sum of the smallest
(p — k) eigenvalues of S(H) — diag(P(H)).
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Let us consider an elliptically symmetric distribution G on IR? with parameters X and
p and density

g((z — p)'S"(z — p))
det(X)

fus()

where the function ¢ has a strictly negative derivative ¢’. Assume that the factor model (2.2)
holds and the functionals T and S are Fisher consistent, i.e. T(G) = p and S(G) = X. Then
the eigenvalues [\, ..., \i] of A(G) = L(G)L*(G) are Fisher consistent for the eigenvalues
[n1,...,mk) of AA®, the matrix A(G) is Fisher consistent for AA’, and P(G) is Fisher
consistent for W.

To obtain the influence functions IF(z, P,G) and IF(z, LL',G), we will first compute
the influence functions IF(x, \;,G) and [F(z,v;,G). For the scatter estimators S we are
interested in, I F(z, S, G) is known.

Since (A1 (G), v1(G)), ..., (Me(G), vi(G)) are eigenvalue/eigenvector pairs of the symmet-
ric matrix S(H) — diag(P(H)), it is possible to apply lemma 2.1 of Sibson (1979). We use

the reformulation of this lemma by Croux and Haesbroeck (2000, lemma 3) yielding

IF(x,)\;,G) = vi(G)[[F(z,8,G) — diag(IF(z, P,G))]v;(G) (4.5)
IF(w.v,.6) = 3 5 1 6 WO LF (2. 5,6) + diag (1P (x, P.G)) ey (6)}uu(6)
% J

+ 3 g (O diegIF @ P.G) ~ 1F(x, 5,6l (@) }ai(©)

b
> N(G) i N (G) {v}{(G)[-IF(z,8,G) + diag(IF(z, P,G))]v;(G)}vi(G)

=1
I#3
P
t=k+1 "7
The vectors ay+1(G), . .., a,(G) are eigenvectors associated with the (p — k) zero eigenvalues

of S(G) — diag(P(G)) and form an orthonormal basis of the orthogonal complement of
v1(G),...,v(G) in IRP. From equation (4.4) we find the expression of IF(z, P,G) :

k
IF(LU,.P],G) — x SJJ,G Z x )\lﬂ UZJ(G)

—22)\1 'Ul] IF(:L','UU,G). (47)
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This expression contains the influence functions of A; and v;;, so we substitute (4.5) and (4.6)
in (4.7). This yields p linear equations with the unknowns I F(z, P;,G) for j = 1,...,p. This

system of linear equations can be written as
(I, — B)IF(z,P,G) = b(x) (4.8)

in which B does not depend on z and b(x) depends on z through IF(x,S,G). Expressions
for B and b(z) are derived in the Appendix.

Once we have solved (4.8) for the IF(z, P;,G) we can easily compute [ F(x, \;,G) and
IF(z,v;,G) from (4.5) and (4.6). By (4.2) this also yields

k
IF(x,LL",G) = IF(z,A,G) = IF(z,>_\v,v},G) (4.9)
j=1

M-

{IF(z, A, G)v;(G)v}(G) + A (G)IF (z, v;, G)vl(G)

+)\j(G)’Uj(G)IF(ZL’,’Uj,G)t}. (410)

J

Let us now compare the influence functions of the classical principal factor analysis and
the robust principal factor analysis. The difference is due to the I F'(x, S, G) of the estimator

S being used. The influence function of the classical covariance matrix is
IF(z,8G) = (z—p)(z—p)'-2. (4.11)

The influence function of the MCD scatter matrix was derived in (Croux and Haesbroeck
1999) for a distribution Gy with g = 0 and ¥ = I,,. When working with general (u, £) we

use the affine equivariance of S”, yielding
IF(z,8,.G) = (S")'?IF[(S")7'*(x — T), 8", G,|(S")">.

The MCD functional 8" depends on the value 0 < o < 0.5, where 1 —« 22 h/n is the coverage
percentage. As in the previous section, we set o = 0.25 to obtain a good compromise between

efficiency and robustness.

Example 2. Let the trivariate data distribution G be elliptically symmetric with location

vector p = 0 and scatter matrix

211
YX=1121
11 2
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Since p = 3 we can determine only one factor (k = 1). The loadings matrix A is [1, 1, 1]* and
the specific variances are given by ¥ = [1,1,1]. The influence functions (4.8) and (4.9) can
now be computed. Figure 4 shows plots of the classical and robust influence functions. The
graphs are made for z = (1, x2,0) in order to represent them in a three-dimensional plot.
(Plots of IF (1, x9,¢) for ¢ # 0 look quite similar.) The influence function IF(x; Pf,G) in
Figure 4a is unbounded, and shows that an outlying x can have an arbitrarily large effect on
P, confirming the findings of Tanaka and Odaka (1989). On the other hand, the influence
function of our robust counterpart in Figure 4b is bounded. Inside the elliptical central region
of the z-distribution (corresponding to the MCD) the IF looks like that of the classical PFA
in Figure 4a, and outside that region it is constant. Figures 4c¢c and 4d plot the influence
function of (LL")3; for the classical and the robust PFA methods, with the same relation
between them. This shows that any outlier 2 has only a bounded effect on the robust PFA
results, no matter how far z is away from G.

In order to obtain smooth influence functions, it suffices to replace the MCD scatter
matrix by an S-estimator of multivariate location and scatter (see Rousseeuw and Leroy
1987). These estimators currently need more computation time than the MCD, especially
for large n, but their influence function is smooth as can be seen in (Croux and Haesbroeck
1999). We then have to insert the latter influence function into (4.5) — (4.7), yielding smooth
versions of the plots in Figure 4.

Until now we considered the IF of PFA based on a covariance matrix. Another possibility
is to work with a correlation matrix p. As in (2.3), this p is obtained by the formula
251/ 222,_71/ > where ¥p consists of the diagonal of ¥ and zeroes elsewhere. Then the
loadings matrix A € IRP** and the specific variances ¥ € IRP satisfy p = AA! + diag(®).
We find analogous equations for I F(z, P,G) and I F(x, LL!, G), with the only difference that
S(G) is replaced by R(G) and therefore v; and A; change. The formula for differentiating

a product of three matrices yields

IF(z,R,G) = X, IF(z,8,G)=5"* - %EgllF(x, Sp,G)p

—%nglm(;p, Sp, G). (4.12)

In the bivariate situation, Devlin et al. (1975) gave the influence function of the classical

correlation and plotted its contours.
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Figure 4: Influence function IF(z, P;,G) based on (a) the classical covariance matrix and

(b) the MCDT5 scatter matrix; plot of IF(z, (LL"),,, G) based on (c) the classical covariance
matrix and (d) the MCD75 scatter matrix.
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Example 3. We carry out a factor analysis based on the correlation matrix, at the distri-

bution G of the previous example. The population correlation matrix is

1 1
]'22
— 1 1 1
P=135 13
1 1
221

The number of factors remains £ = 1, and now A = [\/Li’ %, %]t with ¥ = [%, %, %] Figure
5 shows the influence function of the classical and the robust PFA. The differences between
them can be interpreted in roughly the same way as in Figure 4. However, there is an

important difference: the constant part in Figures 5b and 5d is zero, whereas that in Figures
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4b and 4d is not.
When Gy is such that g = 0 and ¥ = I, the influence function (4.11) of the classical

covariance matrix is
F(x,8°Gy) = x2' -1,
whereas that of the MCD scatter matrix equals
IF(z,S8",Go) = c x2'I(||z]] < qo) + w(||z|)I,, (4.13)

where w is a certain real-valued function, ¢, = \/X%,l—a and ¢ is a constant which depends
on « and p, as shown by Croux and Haesbroeck (1999). Therefore the influence functions of
S¢ and S” look similar for ||z|| < ¢, whereas for ||z|| > g, that of S” only depends on ||z||.

The influence function of the diagonal elements of the correlation matrix (always ones) is
zero. For the off-diagonal elements we only have to consider the first part of the right hand

side of expression (4.13). Together with expression (4.12) we obtain
IF(z, R",Go) = ¢ IF(z, R®, Go)I(||z]| < ga).
For general g and X the result follows from equivariance:
IF(z,R",G) = h(x)IF(z, R°,G)

with h(z) = ¢ I(|27"2(z — p)|| < o). From (4.5) to (4.7) it follows that

[F(z,P",G) = h(z)IF(z, P°,G)

IF(z,X},G) = h(z)IF(z,X,G)

IF(z,v,G) = h(z)IF(z,v%G)
IF(z,(LLY",G) = h(z)IF(z, (LLY)", Q)

Hence, for factor analysis based on correlations the robust influence functions are ‘skipped’

versions of the classical influence functions.

4.2 The Empirical Influence Function

Until now we computed the influence functions in the population case, where we know the

true underlying distribution GG. In the empirical setting we only have a sample X, € IR"*?
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without knowing G. However, the unknown G depends only on the parameters p and
3, which we can replace by estimates T'(X,,) and S(X,,) in the formula of the influence
function. The resulting empirical influence function (EIF) is then evaluated in a data point
x; to measure its effect on the principal factor analysis. Our aim is to detect the most
influential observations z; by comparing the EIF(z;) fori =1,...,n.

We can construct the EIF of the classical PFA (e.g. of P;) and of the robust PFA (e.g.
of P;). For T(X,) and S(X,) we can take the classical estimates (T, S}) or the robust
estimates (T, S}). This yields four ways to define the EIF:

e Tanaka and Odaka (1989) computed EIF (z;; P;;T:,St). This approach is the sim-
plest, but often masks outliers when there is more than one, because T, and S, break

down.

e Masking also occurs with EIF(x;; P;; T, S;) for the same reason. We will not con-

sider this possibility further.

e Substituting the robust T, and 5], in the robust IF yields EIF(z;; P;; T, S;). This
function illustrates the fact that an outlying x; has only a small effect on P; , which is

natural because we constructed P, for this purpose.

e Substituting the robust T, and S}, in the classical IF yields EIF(z;; P;,; T, S}).
This is the most useful, because T}, and S}, are not affected by outliers. Therefore, we
prefer this approach to reveal influential points (i.e. points that would strongly affect
the classical PFA). Ideally, we would like to have ETF(x;; P;; p, 3) for the true p and
¥ of the parent distribution, but in the presence of outliers the T and ) are good

approximations to these parameters.

In practice, to detect the most influential data points x; we therefore recommend to compute

the EIF (z;; P;; T, S)).

Example 4. Let us illustrate these approaches on the aircraft data set of Example 1. We
compute the empirical influence functions EIF(x;; P;) and an overall value | EIF(z;; P)|| =

\/ |EIF(z;; P1))2+ ...+ |EIF(x;; Ps)|? in the 23 observations z; for the different versions of

the EIF considered above. Figure 6 plots || EIF(x;; P)|| versus the case number i.
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Figure 6: The empirical influence functions ||E1F(z;; P)|| evaluated in 23 aircraft.

We see that the outlying cases 14 and 22 have a relatively small ||EIF (z;; P;; T5, S5)|l-
This is because T, and S, try to fit all the data points, so S;, becomes too large (see also
Rousseeuw and Van Zomeren 1990). Secondly, using the robust estimates P, T, and S
leads to ||EIF(zy; P ; T, S))|| = 0 for cases 14 and 22. This illustrates the robustness of
P; but does not help to detect the influential points. The only function that clearly shows
the influential points is | EIF (z;; Pi; T, S})||, which takes on huge values for cases 14 and
22.

5 Examples

To illustrate robust factor analysis we consider two real data examples. The vole data set
(Airoldi and Hoffmann, 1984) consists of 45 Microtus ochrogaster species. The variables are

the age in days (X1), the condylo-incisive length (X2), the length of the incisive foramen
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(X3), the alveolar length of the upper molar tooth row (X4) and the interorbital width (X5).

First, we compute the Mahalanobis distances and the robust distances. The robust

distances (Rousseeuw and Leroy 1987) are given by

RD(z;) = d(z;,T},8;) = +/(zi — T})"(S}) Nz — T,) (5.1)

whereas the Mahalanobis distances M D(x;) equal d(z;, T, St). As proposed by Rousseeuw
and Van Driessen (1999), Figure 7 plots the RD(z;) versus MD(x;) with cutoff value
\/X30.075 ~ 3.58 on both axes. The robust distances detect eight outliers (cases 3, 4, 8,
9, 23, 39, 40, 41) while the M D(x;) do not flag any. Let us compute the empirical influence

g 39
0 9
<40
4°23 3
< | .41
[0
(8] -
C e )
© M .
°
(=]
7] .
S
Q .
(=] -
o N e
o
o 4
0 1 2 3

Mahalanobis Distance

Figure 7: Distance-distance plot of the vole data set.

function FIF(z;; P;; T, S)) for a principal factor analysis with k = 2. To see which obser-
vations are unusually influential, we need a cutoff value. This value will depend on the data
set, because factor analysis is not affine equivariant. (If we transform the data linearly, we
cannot simply derive the new loadings and specific variances from the old ones).

To compute the cutoff value we generate data sets X® for s = 1,...,m with the same
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dimensions, according to the factor analysis model
X6 = AP 4 O

where A is set equal to the robust estimate L’ of the original data, the entries of &)
are generated from N(0,1), and the entries 51(;) are generated from N (0, (Py);) . Next, we
compute the value || EIF(z;; PS;T", S")|| for each case z; in each data set X*). The cutoff
is then obtained as the 95% quantile of all these values. For the vole data we found the
cutoff value 23.5. In Figure 8 we see that cases 8, 9, 39, 40, and 41 have an exceptionally

high |EIF (z; Py; T, S},)||, hence these cases are highly influential.

39

150
—————

L
iFavaveairnil ]

0 10 20 30 40

Vole data: case number i

Figure 8: Empirical influence function ||EIF(z;; P;; T, S},))| of the vole data.

Figure 9 shows the biplots of the classical analysis and the robust analysis. As before,
the classical factor analysis has the disadvantage that the estimates for g and the correlation
matrix p are affected by the outliers. Therefore the factors and loadings do not give the
structure of the correlation matrix of the good objects, since they are also influenced by
the outliers. The two biplots are clearly different, due to the differences between R, and

R;,. (For instance, the classical correlation between the variables X3 and X4 is 0.45 and
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Figure 9: Biplots of (a) classical and (b) robust factor analysis on the vole data.
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the robust correlation is 0.12. For the correlation between X2 and X5 we have 0.09 for
the classical and —0.35 for the robust correlation.) Also note that cases 36 and 40 have a
different position in the two biplots.

Looking at the classical results in Table 2, we see that the variables X2, X3, and X4 load
highly on factor 1, and the variables X1 and X2 dominate factor 2. For robust PFA the
variables X1, X2, and X5 load highly on factor 1 and the variables X2, and X3 load highly
on factor 2. This again illustrates that the robust FA finds a different structure, which in

fact corresponds to the data set without the outliers.

Table 2: Loadings of both factor analyses on the vole data.

Loadings of Classical FA

Loadings of Robust FA

Variable Factor 1 Factor 2 Factor 1 Factor 2
X1 0.000 0.750 0.657 0.102
X2 0.791 0.568 0.742 0.477
X3 0.671 0.188 0.147 0.666
X4 0.646 0.210 0.344 0.137
X5 0.126 0.000 -0.426 0.000
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The Swiss bank notes data (Flury and Riedwyl 1988) describe 100 forged bank notes of
1000 francs. The variables are the length of the bill (X1), the height of the bill measured
on the left (X2), the height of the bill measured on the right (X3), the distance of the inner
frame to the lower border (X4), the distance of the inner frame to the upper border (X5)
and the length of the diagonal (X6). In the distance-distance plot (Figure 10) the robust
distances RD; detect 19 outliers.

o 71

12

10

Robust Distance
6

+60

.48
.38
11
.68

+87

*80

*61

*67

Mahalanobis Distance
Figure 10: Distance-distance plot of the bank notes data.

For the factor analysis with k = 2 the empirical influence function EI1F(z;; P:; T, ,S;)
is shown in Figure 11, with the cutoff value 5.99 obtained through simulation. The points
with high influence are cases 11, 38, 48, 60, 61, 62, 67, 68, 71, 80, 82, 87, 92 and 94.
All of these are also z-outliers, as we can see in Figure 10. However, one of the far z-
outliers (case 16) in Figure 10 has only a small influence on the factor analysis (Figure
11). This situation is similar to a bivariate scatterplot, where a point may be far from the
data cloud without influencing the regression line. Think of a point lying on the linear
trend of the bulk of the data. In regression analysis, this is called a ’good leverage point’

(Rousseeuw and Van Zomeren 1990). We could detect such points in factor analysis by
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Figure 11: Empirical influence function ||EIF(x;; P;; T, .S} )|| of the 100 bank notes.

plotting ||EIF (z;; P;; T, S7))|| versus RD(x;), together with their cutoff values. This
would be a useful diagnostic plot.

Let us compare the biplots (Figure 12) and the loadings (Table 3) of the two factor
analyses. Variable X6 has a different position in the two biplots. This has to do with the
fact that the classical correlation between X1 and X6 is only 0.05, whereas their robust

correlation is 0.36. The classical and robust loadings in Table 3 also differ substantially.

6 Discussion

A referee asked to show that our method can also resist outliers in factor space, in the
following way. Let us again consider again Table 1. The loading matrix based on classical

FA is denoted by A; € IR**?, and the one based on the robust FA is denoted as A,. We

now generate 95 data points z; from the first factor model
;= AP, + ¢ (6'1)
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Figure 12: Biplots of the bank notes data: (a) classical, and (b) robust.

with ®@; ~ No(0,I) and &; ~ N5(0,I). We then add 5 additional points to this data set

generated from another factor model
z; = AP, + & (6'2)

with ®; and e; generated as before. We also checked that the Mahalanobis distances
x;(A; AL + I)~1at of these 5 additional points were larger than the cutoff value x2(0.975) so
that these 5 observations deviate from the factor model (6.1).

The empirical influence function ||EI1F(x;; P;;T,, S, )| is plotted in Figure 13. From
this plot we can clearly see that the robust method has indeed downweighted these 5 points.

Standard errors for the loading estimates based on the MCD scatter matrix can be
computed as follows. Since the MCD is asymptotically normal, see (Butler et al. 1993)
and (Croux and Haesbroeck 1999), it follows that under the model the loading matrix L =
[VAivy, ..., V/Apvy] which follows the model satisfies

V(L — Aj)P — N,(0, ASV (L))

where ASV(L;) = Eg[IF(z,L;,G)IF(z,L;,G)"]. Using the expressions (4.5) and (4.6) for
IF(z,\;,G) and I F(z,v;,G) we can obtain the influence function for the vector of loadings
L; as

IF(z,L;,G) = IF(z,\;,G) + IF(x,v;,G)\/A;.

1
2%
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Table 3: Loadings of both factor analyses on the bank notes data.

Loadings of Classical FA Loadings of Robust FA

Variable Factor 1 Factor 2 Factor 1 Factor 2
X1 -0.143 0.403 0.182 0.517
X2 0.000 0.807 -0.202 0.787
X3 0.109 0.744 0.000 0.732
X4 0.974 -0.199 -0.974 0.000
X5 -0.664 0.000 0.879 0.000
X6 0.302 0.000 0.167 0.557
& || EIF (x;PL TS0 |l
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Figure 13: The empirical influence function |EIF(z; P}; T, S})| evaluated in 100 gener-

ated points

The covariance matrix of L; can then be obtained by
COV (L)) = 50 | IF(x,L;, F,)IF (v, L;, F,,)" where F, is the empirical distribution. The
standard errors can now be obtained as std(l;j) = \/COV(L;);. Croux and Dehon (2001)

used the same approach to obtain standard errors for robust canomcal correlations.
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7 Appendix

We will derive the system (4.8) of linear equations. Substituting (4.5) in the right hand side
of (4.7) gives

IF(x,P;,G) = IF(x,S,;,G) — Z% v H(G)IF(z, S, G)v)(G)]

Z% G)diag[IF (z, P, G)]v,(G —QZ)\l Yo (G)IF (05, G).  (7.1)

Since IF(z, S, @) is known, (7.1) relates the influence functions I F(z,v;,G) and
IF(z, P;,G) to each other. Simplifying,

IF(z,P;,G) = IF(z,5;;,G) — Z% oG IF(xz, 8, G)vi(G)]

k
+Zvly szsIF z, Py, ) —22)\1 Yo (G F (z,v5,G).
=1

Let us define the constants

cgl) F(z,95,;,G) — Zvl] WHG)IF(z, S, G)v)(G)] and (2) Z%Uls
yielding
IF(z,P;,G) = +Zc(2)IF (z,P,,G) — 22)\1 Yo (VI F(z, v, G).  (7.2)

We now consider equation (4.6) and define the constant vector

@ _ 1
q;él
[—IF(z,8,G)v(G)a,(G).
k+1
This yields
k
IF(Z]},UU,G) = Cl(j) +Z ()\q(G) quz IF x RJG)UIZ( )}UQJ(G)
o
Z {Zaqz M F(z, P, Gui(G) Yag (G).
q= k—|—1
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By means of the constant matrix ¢ € IRP*P*? given by

k p
(4) 1 —1
c = vinin‘GjLE — a5 (G (G)ag (G
lji ; ()\q(G)—)\l(G)) Q( ) l( ) QJ( ) et )\I(G) Q( ) l( ) QJ( )
q#l
we obtain the simple formula
[F(z,05,G) = o + ch4)IF (. P, G). (7.3)

We can now substitute (7.3) into (7.2), yielding

»
IF(2,P;,G) = )+ JIF(z, P, G) - 22)\1 Yo (G)el?)

s=1
~2 Z{Z M(G)v(G)e M F (2, P, G)
=1 =1
Defining the constants
k k
bi(z) =i =23 " N(Gy(G)e)  and Y = —23 " N(G)uy(G)el]
=1 =1

fori,7 =1,...,p we can write

IF(z,P;,G) = b +chj IF(z, P,,G) +Z [F(z, P, G).
With the notation B;, = cg-) + C;i) we find

p
IF(z,P;,G) = bij(z)+ Y _ B;IF(z,P,G)

s=1

or in matrix notation:
(Ip — B)IF(z,P,G) = b(x). (7.4)

This system of p linear equations with the unknowns I F(z, Ps,G) for s = 1,...,p can be

solved numerically. The matrix B is given by

k

Bjs = ) _[j(G)ui(G)+
. 2 P2
)‘Z(G)UZJ(G)(; ()\I(G) _ )\q(G))'qu(G)'Uls(G)'qu(G) + q:;—l maqS(G)vls(G)aﬁ(G))]'
q#l

Note that B does not depend on z, whereas b(z) depends on x through IF(x, S,G).
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