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Abstract: In this paper a robust approach for fitting multiplicative models is presented.

Focus is on the factor analysis model, where we will estimate factor loadings and scores by

a robust alternating regression algorithm. The approach is highly robust, and also works

well when there are more variables than observations. The technique yields a robust biplot,

depicting the interaction structure between individuals and variables. This biplot is not

predetermined by outliers, which can be retrieved from the residual plot. Also provided

is an accompanying robust R2-plot to determine the appropriate number of factors. The

approach is illustrated by real and artificial examples and compared with factor analysis

based on robust covariance matrix estimators. The same estimation technique can fit models

with both additive and multiplicative effects (FANOVA models) to two-way tables, thereby

extending the median polish technique.
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1 Introduction

Factor analysis (FA) is a standard multivariate technique that is routinely used in the social

and behavioral sciences. The aim of factor analysis is to understand and summarize the

correlation structure of the observable variables X1, . . . , Xp. For this purpose one assumes

the existence of k < p unobservable or latent variables F1, . . . , Fk which are called the factors,

and which are linked with the original variables through the equation

Xj = λj1F1 + λj2F2 + . . . + λjkFk + εj (1.1)

for each 1 ≤ j ≤ p. The error variables ε1, . . . , εp are assumed to be independent of each

other and of the factors. The coefficients λjl are called the loadings, and collected into the

matrix of loadings Λ. The variances of the error terms are denoted by ψ1, . . . , ψp and called

the specific variances or uniquenesses. We will treat (1.1) as a multiplicative model, and

study the FA model as the basic multiplicative model.

Using the vector notations
˜

X = (X1, . . . , Xp)>,
˜

F = (F1, . . . , Fk)>, and ε = (ε1, . . . , εp)>,

the usual conditions on factors and error terms can be written as E(
˜

F ) = E(ε) = 0,

Cov(
˜

F ) = Ik, and Cov(ε) = Ψ, where Ψ = diag (ψ1, . . . , ψp) is a diagonal matrix, containing

the specific variances on its diagonal. Furthermore, ε and
˜

F are assumed to be independent.

In factor analysis, one needs to estimate the matrix Λ (which is only specified up to an

orthogonal transformation) and Ψ. Classical FA methods are very vulnerable to outliers

(Tanaka and Odaka 1989a,b), hence more robust methods need to be constructed.

Nearly all FA procedures are based on a decomposition of the covariance matrix Σ of
˜

X.

Indeed, from
˜

X = Λ
˜

F + ε it follows that

Σ = ΛΛ> + Ψ. (1.2)

In classical factor analysis, the matrix Σ is estimated by the sample covariance matrix

Σ̂. (When X1, . . . , Xp are standardized versions of the original variables, Σ becomes the

correlation matrix.) Next, one tries to decompose Σ̂ as in (1.2) to obtain estimates of Λ

and Ψ. Typically Σ̂ cannot be decomposed exactly as in (1.2), so we must resort to an

approximate decomposition. Many methods have been proposed for this decomposition, of

which Maximum Likelihood (ML) and the Principal Factor Analysis (PFA) method are the

most frequently used (see, e.g., Basilevsky 1994). However, it is well known that outliers

can heavily influence the classical estimate of Σ and hence also the parameter estimates.

It is therefore natural to insert a robust scatter matrix estimator instead of the sample

covariance matrix. This approach was taken by Kosfeld (1996) who inserted a multivariate
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M-estimator, and by Filzmoser (1999) who used the Minimum Volume Ellipsoid (MVE)

estimator (Rousseeuw 1985) in a geostatistical problem. Since the MVE estimator has a non-

normal convergence, Pison et al (2002) instead used the Minimum Covariance Determinant

(MCD) estimator of Rousseeuw (1985). The MCD looks for the subset of h observations out

of n having the smallest determinant of its sample covariance matrix. Typically, h ≈ 3n/4.

The MCD estimator for Σ is then a multiple of that covariance matrix. Pison et al (2002)

showed that a robust PFA method is preferable to a robust ML approach and that PFA

based on MCD results in a factor analysis method with bounded influence function. This

kind of approach is conceptually simple and fast, but it is limited to data sets with fewer

variables than objects (i.e. p < n) which is not always the case. Moreover, it will turn out

that the method we will introduce remains an interesting alternative to the approach based

on robust covariance matrix estimators when n ≥ p.

In this paper an approach is proposed which estimates the unknown parameters directly,

without passing via an estimate of the covariance matrix. For this we will modify the tech-

nique of alternating regression of Wold (1966), also called criss-cross regression by Gabriel

and Zamir (1979). The sample version of model (1.1) is given by

xij =
k

∑

l=1

λjlfil + εij (1.3)

for i = 1, . . . , n and j = 1, . . . , p. Let us for a moment consider the factor scores fil as fixed

or known and suppose that preliminary estimates for them are known. The loadings λjl

can then be estimated by linear regressions of the xij on the scores. On the other hand, if

preliminary estimates of the loadings are available, we can estimate the scores fil by linear

regressions of the xij on the loadings. Our approach will combine these two viewpoints.

Moreover, estimates ψ̂j for ψj can easily be obtained from the residuals. In view of possible

outliers, all estimations will be done robustly. We propose to use a weighted L1 regression

estimator, which is robust in this setting and can be fastly computed.

The approach we will pursue will be called RAR, from Robust Alternating Regression.

It treats the rows and columns of the data matrix in the same way, which we will see is

useful for dealing with missing values and outliers. Section 2 defines the RAR estimator and

Section 3 describes the algorithm in more detail. Experiments on real and simulated data

show that this method works well, converges quickly and is highly robust. A documented

S-plus function for RAR is freely available at http://www.statistik.tuwien.ac.at/public/filz/.

An accompanying robust R2-plot is presented in Section 4. This R2-plot helps to select the

number of factors in (1.3). Section 5 presents a real and an artificial data example. A robust
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biplot is obtained by taking k = 2 factors and simultaneously plotting the individuals by

(f̂i1, f̂i2) and the variables by (λ̂j1, λ̂j2). The robust biplot shows the main features of the

data set and is not affected much by outliers in the data. Such outliers can be detected from

the robust residuals.

Section 6 describes a simulation comparing the proposed method with classical PFA

and other competitors. Section 7 extends the RAR procedure to fit another multiplicative

model, the Factor Analysis of Variance (FANOVA) model introduced by Gollob (1968). A

FANOVA model combines aspects of ANOVA and factor analysis. In the FANOVA setting,

the RAR estimator can be seen as an extension of the well-known median polish technique.

Conclusions are formulated in Section 8.

2 The RAR Estimator

As usual, the n×p data matrix X contains the individuals (cases, objects) in the rows and the

observed variables (characteristics) in the columns. The variables are already standardized

to have zero location and unit spread. A factor score is denoted as fil. The ith score vector

is given by fi = (fi1, . . . , fik)>, while the jth loading vector is λj = (λj1, . . . , λjk)>. Both the

loading vectors and the score vectors are unknown. Denote by θ = (f>1 , . . . , f>n , λ>1 , . . . , λ>p )

the vector of all scores and loadings, and let

x̂ij(θ) =
k

∑

l=1

filλlj = f>i λj = λ>j fi

be the fitted value of xij according to the model (1.3). By choosing θ such that the fitted and

the actual values of the data matrix are close together, we define estimates f̂i for the score

vectors and λ̂j for the loading vectors. The fitted data matrix X̂ can then be decomposed

as

X̂ = F̂ Λ̂> (2.1)

where the rows of F̂ are the estimated scores and the rows of Λ̂ are the estimated loadings.

Observe that the rank of X̂ is at most k < p, while the rank of X is typically p.

The least squares (LS) approach is to minimize the sum of squared residuals:

θ̂LS = argmin
θ

n
∑

i=1

p
∑

j=1
(xij − x̂ij(θ))2. (2.2)

The resulting X̂ can be seen as the “best” (in the least squares sense) approximation of the

data matrix X by a rank k matrix. The Eckart-Young theorem (Gower and Hand 1996,
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p. 241) says that this best fit can be obtained by performing a singular value decomposi-

tion X = UDV > of the data matrix. By replacing all singular values in D by zero except

for the k largest ones, one obtains Dk and finally X̂ = UDkV >. By taking F̂ =
√

nU

and Λ̂ = V Dk/
√

n we obtain the so-called Principal Component solution to the FA prob-

lem (cfr. Johnson and Wichern 1998, p. 524). Moreover, the sample covariance matrix of

the estimated score vectors equals F̂>F̂ /n = Ik which is consistent with the assumption

Cov(
˜

F ) = Ik. Note that we are interested in estimating the factor model (1.3), and that we

will not be deriving robust principal components (as has been done in Croux and Haesbroeck

2000, for example). In principal components one constructs linear combinations of observed

variables, while in a factor model the observed variables are generated by unobserved fac-

tors. In other words, in a factor model the observed variables are at the left hand side of the

equation, while in a principal components model they are at the right hand side.

It is important to note that the estimates F̂ and Λ̂ in (2.1) are only specified up to a

linear transformation. Since X̂ = (F̂ T>)(Λ̂T−1)> for any non singular k by k matrix T ,

it follows that F̂ T> and Λ̂T−1 attain the same value for the objective (2.2). However, the

fitted values X̂ are uniquely defined. Moreover, if we add the restriction that the estimated

covariance matrix of the score vectors needs to be the identity matrix, then the estimates

F̂ and Λ̂ in (2.1) are specified up to an orthogonal transformation, making the matrix Λ̂Λ̂>

uniquely defined.

Since the LS criterion gives too much weight to large residuals, a first idea is to use the

L1 criterion (or Least Absolute Deviations criterion) instead, which is known to give a very

robust additive fit to two-way tables (Terbeck and Davies 1998). This yields the estimator

θ̂L1 = argmin
θ

n
∑

i=1

p
∑

j=1
|xij − x̂ij(θ)|. (2.3)

For the optimal F̂ and Λ̂, it must hold that f̂i minimizes
∑p

j=1 |xij− f>i λ̂j| and λ̂j minimizes
∑n

i=1 |xij− f̂>i λj|. Therefore, instead of minimizing both sums in (2.3) at the same time, one

fixes an index j and scores fi and selects the λj to minimize
n

∑

i=1
|xij − f>i λj|. (2.4)

The above problem is now linear instead of bilinear and can easily be solved with a Least

Absolute Deviations regression algorithm. One sees immediately that minimizing (2.4) con-

secutively for j = 1, . . . , p corresponds to minimizing (2.3) for fixed scores. Analogously, for

fixed loadings λj, finding the fi minimizing
p

∑

j=1
|xij − f>i λj| (2.5)
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(for each i = 1, . . . , n in turn) corresponds to minimizing (2.3) when the loadings are given.

Alternating (2.4) and (2.5) leads to an iterative scheme of alternating regressions. Note that

the value of the criterion in (2.3) decreases at each step.

Similar algorithms, but based on alternating classical least squares regressions, are pop-

ular in chemometrics (Martens and Naes 1989) and the behavioral sciences (Gifi 1990). See

also (de Falguerolles and Francis 1992, Gabriel 1998) for generalized bilinear models.

Unfortunately, L1 regression is sensitive to leverage points. If outlying score or loading

vectors are present, the L1 regressions can be heavily influenced by them. By downweighting

these leverage points we obtain a weighted L1 regression, resulting in the estimator

θ̂RAR = argmin
θ

n
∑

i=1

p
∑

j=1
wi(θ)vj(θ)|xij − x̂ij(θ)|. (2.6)

One single objective function estimates F̂ and Λ̂ simultaneously from the rows and columns

of X. The result of (2.6) is named the RAR estimator, since we will use Robust Alternating

Regressions to compute it. The estimator will not be misled by outlying observations.

The row weights in (2.6) are defined by

wi(θ) = min(1, χ2
k,0.95/RD2

i ) for i = 1, . . . , n (2.7)

where χ2
k,0.95 is the upper 5% critical value of a chi-squared distribution with k degrees of

freedom, and

RDi =
√

(fi − T (F ))>C(F )−1(fi − T (F )) for i = 1, . . . , n

are robust distances (Rousseeuw and van Zomeren 1990) computed from the collection of

score vectors F = {fi|1 ≤ i ≤ n} in k-dimensional space. Such weights were used by Simpson

et al (1992) and yielded stable results. The robust multivariate location and scatter estima-

tors T and C are taken as the location and scatter part of the MVE estimator (Rousseeuw

1985). The MVE estimator was chosen here since it performs well as an outlier identifier

(see Becker and Gather 2001). Analogously, the set of column weights vj is defined using

the loading vectors. Note that, since the true loadings and scores are unobserved, wi and vj

depend on the unknown parameter vector θ.

From the robust residuals ε̂ij = xij − x̂ij = xij − f̂>i λ̂j, we can estimate the specific

variances using

ψ̂j = (MADj(ε̂ij))2. (2.8)

Here, MAD is made consistent at univariate normal distributions by multiplication with

1.4826, so that it will estimate the same quantity as the nonrobust standard deviation.
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Note that the estimates ψ̂j are positive by construction, so there are never problems with

negatively estimated specific variances.

The specific variances do not come in explicitly in the definition of the estimators for

the loadings, and are estimated at the very end. This is in contrast with most other factor

analysis procedures. Our experiments indicated that, for reasons of robustness, it is better

not to make an extra heteroscedasticity weighting in the criss-cross regression scheme. If

the regression estimators are consistent in presence of heteroscedasticity, the procedure will

maintain its validity even for Ψ not proportional to the identity matrix. Recall that LS

estimators and also many robust regression estimators remain consistent under not too heavy

forms of heteroscedasticity (see e.g. El Bantli and Hallin (1999) for L1-estimators and Hallin

and Mizera (2001) for M -estimators).

Remark: It was pointed out by the referees that there is a consistency problem for the

RAR estimator (as well as for θ̂L1 and θ̂LS). If the scores fi would be exactly known, then

the consistency of the L1 regression estimator implies consistency for λ̂j, since

λ̂j = argmin
β

n
∑

i=1
wi|xij − f>i β|.

It would then also follow that ψ̂j → ψj for n → ∞, as long as we use a consistent scale

estimator applied on the residuals xij − f>i λ̂j, as we did in (2.8). The problem is of course

that the scores fi are not known but estimated. Only for p → ∞ the estimated scores

approach the true ones. In practice the dimension p is finite, and we encounter a “finite

dimension bias”. Of course, since the sample size n is also finite, we have as well the more

familiar “finite sample bias”. A more formal study of the asymptotics of the RAR estimator

(for both n and p tending to infinity) is beyond the scope of this paper, and may even be

infeasible.

3 The RAR Algorithm

The RAR estimator defined in (2.6) can be approximated by an alternating algorithm, as

outlined below.

• Step 0: To obtain invariance with respect to a change of measurement units, the data

are first scaled in a robust way:

xij ←
xij −medi(xij)

MADi(xij)
, (3.1)
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where MAD stands for the Median Absolute Deviation. Note that orthogonal or affine

equivariance properties are not necessary in a factor model. This initial standardization

corresponds with a correlation matrix based FA. Standardizations using other estima-

tors of location and scale could be envisaged, but we prefer to stick to the traditional

choice (3.1).

• Step 1: starting values. First, a robust principal component analysis (PCA) pro-

cedure is performed. The resulting scores are then taken as starting values f̂ (0)
i for

the factor scores. We use the projection pursuit (PP) based estimator of Li and Chen

(1985), implemented as in Croux and Ruiz-Gazen (1996). This PP-based method is

fast to compute, can deal with p > n, and is highly robust. Moreover, this approach

allows one to compute just the first k principal components (the only ones that are

needed here), which reduces the computation time even further. Using classical PCA

in this first stage would slow down the convergence considerably, and could lead to a

nonrobust FA when there are many outliers. Alternatively, one could take several ran-

dom starting values, which could help to check for a local versus global optimum. But

the latter approach will increase computation time significantly. In any case, experi-

ments have shown that the choice of the starting values is not too crucial for finding a

good approximation.

• Step 2: the iteration process. Now suppose that the iteration process has reached

step t (t ≥ 1) of the algorithm, and the f̂ (t−1)
i are available.

* First compute weights w(t)
i as defined in (2.7), which downweight outliers in the

set of estimated score vectors {f̂ (t−1)
i |1 ≤ i ≤ n} in IRk. Then compute

λ̂(t)
j = argmin

λ∈IRk

n
∑

i=1
w(t)

i |xij − λ>f̂ (t−1)
i | (3.2)

for j = 1, . . . , p. In this part of the procedure, one needs to perform an L1 fit p

times (and this will be the case at every iteration step). Note that the loadings

are estimated one at a time, which turned out to be more convenient for the

implementation of the algorithm. Fortunately, very efficient algorithms for L1

regression exist (Bloomfield and Steiger 1983), so this takes little time. Note that

the weights w(t)
i only need to be computed once every iteration step. They require

computation of a robust scatter estimator in the factor space, which is usually of

a low dimension k.
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* We analogously compute weights v(t)
j which downweight outliers in the set of

estimated loading vectors {λ̂(t)
j |1 ≤ j ≤ p} in IRk. Then compute

f̂ (t)
i = argmin

f∈IRk

p
∑

j=1
v(t)

j |xij − f>λ̂(t)
j | (3.3)

for i = 1, . . . , n.

* The values of the objective function (2.6) computed for the estimates obtained in

step t−1 and step t are compared. If there is no essential difference in the objective

function, the iterative process is stopped and we set f̂i = f̂ (t)
i for 1 ≤ i ≤ n and

λ̂j = λ̂(t)
j for 1 ≤ j ≤ p. If not, Step 2 is repeated.

• Step 3: orthogonalization. This last step is optional and will not alter the fitted

values X̂ = F̂ Λ̂>. We compute a robust estimator Σ̂f of the covariance matrix of the

estimated scores {f̂i|1 ≤ i ≤ n}. Since the scores only have dimension k, where k is

small, the matrix Σ̂f can be computed quickly. We compute Σ̂f by the reweighted MCD

estimator with 25% breakdown value, using the FAST-MCD algorithm of Rousseeuw

and van Driessen (1999). The breakdown value 25% for the MCD has been chosen

since this combines robustness with efficiency (see e.g. Croux and Haesbroeck 1999).

Afterwards we set

F̂ ← F̂ Σ̂−1/2
f and Λ̂ ← Λ̂Σ̂1/2

f .

The effect of the above transformation is that the robust covariance matrix of the esti-

mated scores is now an identity matrix, which mimics the model condition Cov(
˜

F ) =

Ik. Another effect is that the biplot representation of the n cases (see Step 4) will show

no correlation structure, as is common practice in the biplot literature (Gower and

Hand 1996).

• Step 4: Residuals, uniquenesses, biplot. The residuals are obtained as ε̂ij = xij−
x̂ij = xij− f̂>i λ̂j, and can be plotted versus (i, j) in the horizontal plane. This residual

plot is very useful for detecting outliers. From the residuals the uniquenesses can be

estimated as in (2.8). In the common case k = 2 one can represent the individuals by

(f̂i1, f̂i2) and the variables by (λ̂j1, λ̂j2) in the same 2D plot, called the biplot. Section

5 shows examples of the robust residual plot and the robust biplot.

An S-plus function for the RAR estimator is freely available at http://www.statistik.tuwien

.ac.at/public/filz/. It also allows to perform alternating regression using other regression es-

timators, like M-estimators or the highly robust Least Trimmed Squares (LTS) and Least
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Median of Squares (LMS) estimators. It is even possible to execute the algorithm with the

nonrobust Least Squares regression estimator, yielding the same result as the classical ap-

proach of Gabriel (1978) based on the singular value decomposition. Alternating regression

using the LMS algorithm was already considered by Ukkelberg and Borgen (1993). How-

ever, using the LMS yields a very time consuming algorithm. In our experience, the RAR

estimator gave the most satisfying factor analysis method with respect to computation time,

robustness, and stable convergence of the algorithm. Although no proof of convergence

exists, many simulations and examples have shown its good numerical and statistical perfor-

mance. It could be mentioned that even the classical FA procedures may have convergence

problems.

When the data contain no severe outliers, the unweighted L1 estimator is a valuable alter-

native. It is easy to see that for the L1-based method the objective function (2.3) decreases in

each step of the algorithm. The L1 procedure therefore always converges, although it might

happen that the result is not the global minimum. In practice, we found that it always came

very close. One could of course use the resulting estimates as starting values for a general

purpose optimization procedure for minimizing (2.3). Since the starting value is likely to be

very close to the solution, we have a good chance of attaining the global minimum of (2.3).

The RAR procedure required the choice of several auxiliary robust estimators and a

weighting function. Most of these choices are standard, and simulations for other robust

choices led to essentially identical results.

Remark: It is important to note that it is nowhere required that the number of observations

should exceed the number of variables. There is however a restriction on the number of

factors k. The computation of the MVE or MCD, required for computing the weights in the

weighted L1 procedure, requires that

k <
min(n, p)

2
. (3.4)

Since dimension reduction is one of the major aims of factor analysis, (3.4) is not a real

restriction. (A nice feature of the unweighted L1 procedure is that it can be computed for k

up to the rank of X, which equals min(n, p).) The robust R2-plot, which will be presented

in the next section, can be used to select an appropriate value for k.

9



4 A Robust R2-plot

After having fitted the factor model (1.3) with the weighted L1 approach, a natural measure

of the variability explained by the k factors is

R2
RAR(k) = 1−

(∑n
i=1

∑p
j=1 wivj|xij − x̂ij|

∑n
i=1

∑p
j=1 wivj|xij|

)2

. (4.1)

The weights are those of (2.7), with the final estimated scores and loading vectors. The

definition of the measure R2
RAR(k) resembles the definition of the R2 measure in classical

regression, and compares the dispersion of the residuals in the full model with the dispersion

of the residuals in the baseline model without factors. The latter residuals are the observa-

tions xij themselves (recall that the xij were standardized). Surely, by definition of θ̂RAR,

R2
RAR is a number between 0 and 1.

For the L1-based approach, R2
L1(k) is defined as in (4.1) but with all weights equal to 1.

The analogous measure for the LS fit (2.2) is

R2
LS(k) = 1−

∑n
i=1

∑p
j=1(xij − x̂ij)2

∑n
i=1

∑p
j=1 x2

ij

= 1−
trace

(

(X − X̂)(X − X̂)>
)

trace(XX>)
.

Using the singular value decomposition we find X = UDV > and X̂ = UDkV > with D =

diag(σ1, . . . , σp) where σ1 ≥ . . . ≥ σp and Dk = diag(σ1, . . . , σk, 0, . . . , 0). Note that the σ2
l /n

are the eigenvalues of the sample correlation matrix. This implies that for the LS fit

R2
LS(k) = 1− trace ((D −Dk)2)

trace(D2)
=

∑k
l=1 σ2

l
∑p

l=1 σ2
l
,

which corresponds to the percentage of the total variance explained by the first k factors.

A plot of R2
RAR(k) for a range of values of k will be called a robust R2-plot. An appropriate

value for k can be selected on the basis of this plot, in a similar way as the selection of the

number of factors in principal components analysis. Alternatively, one could plot the change

in R2
RAR(k) when adding the k th factor to the model. This would resemble the scree plot

of principal component analysis, and therefore we will call it a robust scree R2-plot.

5 Examples

In this section we apply RAR to real and artificial data. The datasets can be downloaded

from the beforementioned website. We also discuss the robust residual plot, biplot, and

R2-plot.
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5.1 European Population Data

Variables related to the health and fertility of a population were measured for 14 European

countries and two large groups of countries, the Soviet Union (SU) and the European Com-

munity (EU), in their 1986 configuration. The data set is reported in Table 1 and has n = 16

and p = 9. The variables are average population growth from 1986-2000 (pop growth), per-

centage of women of the age able to give birth (give birth), proportion of women of all ages

per 100 men (women%), life expectancy of women (lifeexp f) and men (lifeexp m), infant

mortality rate (inf mort), number of inhabitants per physician (inhab/doc), daily calorie

consumption per head (calorie), and proportion of babies with underweight at birth in %

(baby underw). The data originate from the European statistical agency EUROSTAT.

Table 1 is inserted about here.

In Figure 1 the R2-plot and the scree R2-plot are given for the LS, L1, and RAR method.

The plots indicate that for each method a two-factor model is appropriate, since not much

additional variation is explained by using more factors. Note that the first factor for the

LS method contributes much more than the second one, while for the robust methods this

difference has been smoothed out.

Figure 1 is inserted about here.

After having estimated the two-factor model, we look at the 3D-plots of the residuals

xij − x̂ij versus the pair (i, j) in the horizontal plane. Figure 2 shows these residual plots

for classical principal factor analysis (PFA) and RAR. In the classical plot the residuals are

very small, and no outliers are visible. Aside from the outliers, the residual plot for the RAR

method looks very smooth, but this is only a scale effect. On the other hand, the RAR plot

has large residuals for cells (2,2), (2,7) and (14,2), so this method detects AL (Albania) and

TR (Turkey) as outliers. In general, a robust approach yields a good fit to the majority of

the data. This can be illustrated by computing the sum of squared residuals
∑

i
∑

j(xij−x̂ij)2

with the index i running over all rows except AL and TR. This yielded a value of 575 for

the RAR approach, versus 871 for PFA.
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Figure 2 is inserted about here.

Next, we want to investigate the row and column interaction. This can be done by visual

inspection of the biplot, as described in Gower and Hand (1996). Figure 3 shows the biplots

based on the classical PFA (using the standard S-plus implementation) and on RAR.

Figure 3 is inserted about here.

The shape of the plots are quite different, as can be shown by a Procrustes analysis, and

give rise to different interpretations. In the left plot, AL and TR are outlying in almost all

variables, as are their values in Table 1. In the right plot, they are still visible as outliers,

but the other points are much better represented. Take for example Hungary (H), which has

extreme projections on almost all variables in classical biplot. But this is not corresponding

well to the values in Table 1, whereas the presentation for Hungary in the robust biplot

resembles quite well the real data values. The same exercise can be done for the other

countries. To summarize, the biplot based on classical FA gives a good representation for

AL and TR, but is also heavily influenced by them. Therefore, the representation of the other

rows in the data matrix is rather poor. The RAR biplot gives an accurate representation

of the big majority of the data, as we verified by computing the sum of squared differences

between the observed and fitted values of the cells in the data matrix.

Note that in this example n > p, so it would be possible to start from a robust covariance

matrix. However, in this example n is not very large relative to p. Even when using a maximal

breakdown robust scatter estimator, this approach could break down if 4 = [(n − p + 1)/2]

different rows contain an outlying cell (cfr. Davies 1987). Stated otherwise, we could already

have breakdown if just 4 out of 144 cells in the data matrix are contaminated.

5.2 Artificial Data

As an example, an artificial data set of size n = 50 and p = 7 was generated according to

the model (1.1) with k = 2. The factor scores were generated according to the standard

bivariate normal N2(0, I2). The bivariate loading parameters were generated so that they

form three groups: λ1, λ2, λ3 ∼ N2((−1, 1)>, I2/6), λ4, λ5, λ6 ∼ N2((−1,−1)>, I2/6), and

λ7 = (5, 0)>. The uniqueness parameters are generated as ψj ∼ |N(1.5, 0.5)|, and the errors
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εij ∼ N(0, ψj). Afterwards, 30 observations xij were replaced by severe outliers: we set

xij = 200 for (i = 21, . . . , 35 and j = 6) and for (i = 36, . . . , 50 and j = 4). To these data

we applied Principal Factor Analysis (using the classical correlation matrix) as well as the

RAR method outlined in the previous section.

Figure 4 is inserted about here.

Figure 5 is inserted about here.

The robust biplot in Figure 4 reveals the true grouping of the loading vectors (the arrows),

while the classical biplot fails to do so. The outliers are clearly visible in the robust residual

plot, but not in the classical one (Figure 5). The example is of course artificial, but it shows

that classical FA is not suitable as an outlier detection tool, as some practicioners believe. In

fact, FA is not even intended to be a tool to detect outliers. But in many practical examples,

some outliers (but not necessarily all of them) will show up in the classical biplot, since they

attract the estimates of the scores and loadings towards them. This biplot will then however

not give the factor structure of the data anymore, while this is the real purpose of a FA.

We prefer the biplot to represent the true factor structure, and therefore we use a robust

method. Outliers need not have an outlying projection in the true factor space, so they need

not be visible in the robust biplot. In any case, the outliers will be visible in the robust

residual plot.

6 Simulation

In this section we want to compare the performance of LS, L1, RAR, MCD-based and

classical principal factor analysis (PFA). We generate a matrix F of factor scores, with

elements fil ∼ N(0, 1) for 1 ≤ i ≤ n and 1 ≤ l ≤ k. We also generate a matrix Λ̃ of loadings,

with elements λ̃jl ∼ U(−2, 2) (uniformly distributed in the range [−2, 2]) for 1 ≤ j ≤ p and

1 ≤ l ≤ k. The unique variances ψ̃j are generated as ψ̃j ∼ U(0, 1), and they are combined in

the diagonal of the matrix Ψ̃. Furthermore, we generated a translation vector b with elements
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bj ∼ N(2, 10). These matrices and vectors together build a matrix X with elements

xij =
k

∑

l=1

filλ̃jl + bj (6.1)

for 1 ≤ i ≤ n and 1 ≤ j ≤ p. We took n = 20, p = 6, and k = 2.

For m = 1, . . . , M = 4000 simulations, we generated a noise term εm
ij distributed accord-

ing to N(0, ψ̃j) to build the matrix xm
ij = xij + εm

ij . But, for nout entries, randomly placed in

the data matrix, the noise term was generated from N(0, 20), yielding up to nout outlying

cells. The number of outliers varied from nout = 0 to 18, resulting in at most 15% of con-

taminated cells. It can be seen that the outliers in this example are not so severe. When

having a look at the simulated data matrix X it would be difficult to pinpoint the outliers

immediately.

The estimation procedure outlined in Section 2 was applied to the generated data sets

xm
ij . The standardization in Step 0 of the algorithm yields b̂m

j and ŝm
j as estimates of center

and scale of the p variables. The center and the scale are estimated by the mean and the

standard deviation for the non-robust methods LS and PFA, by the median and the MAD for

the L1 and RAR procedures, and by center and scale from the multivariate MCD estimator

for the MCD-based FA.

Fitting the model gave estimated scores and loadings (computed from the standardized

data), and allowed us to compute the fitted values

x̂m
ij = b̂m

j + ŝm
j

k
∑

l=1

f̂m
il λ̂m

jl . (6.2)

To measure the overall quality of the fit, we simulated the mean squared error by

1
M

M
∑

m=1





1
np

n
∑

i=1

p
∑

j=1

(

x̂m
ij − xij

)2


 (6.3)

and the median squared error by

1
M

M
∑

m=1
medi,j

(

x̂m
ij − xij

)2
. (6.4)

These measures are plotted in Figure 6 for different amounts of contamination, for the

classical PFA, the MCD-based principal factor analysis, the principal component solution

(2.2) to factor analysis (LS), the L1 fit (2.3), and the RAR estimator.

When there is no contamination, the classical procedures have the smallest mean/median

squared error. The LS-based estimator is optimal by construction, but it looses this opti-

mality even in presence of very small percentages of outliers. In presence of outliers, the
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RAR estimator is outperforming all other considered estimators with respect to the above

defined measures. In particular, we see that it is necessary to take the weighted L1 procedure

instead of using ordinary L1.

Figure 6 is inserted about here.

Figure 7 is inserted about here.

To compute the empirical efficiency of the estimators, we need to take into account that we

work with standardized data. The population covariance matrix equals Σ = Λ̃Λ̃>+Ψ̃, which

can be rewritten as R = ΛΛ> + Ψ, with R the population correlation matrix, Λ = D−1/2
Σ Λ̃

and Ψ = D−1/2
Σ Ψ̃D−1/2

Σ , with DΣ = diag(Σ). The reduced correlation matrix A = ΛΛ> is

then estimated by âm
ij =

∑k
l=1 λ̂m

il λ̂
m
jl for m = 1, . . . , M = 4000. Note that we need to do the

orthogonalization (Step 3 of the RAR algorithm) here, in order to have a uniquely identified

reduced correlation matrix. Since the loadings are not uniquely determined, we focus on the

estimation of the reduced correlation matrix. The precision of the estimator of the reduced

correlation matrix is measured by the following mean squared error (MSE):

1
M

M
∑

m=1

1
np

n
∑

i=1

p
∑

j=1

(

âm
ij − aij

)2
. (6.5)

In Figure 7a we see how this MSE varies with the amount of contamination, for the different

estimators. Finally, the MSE of the uniquenesses is computed as

1
M

M
∑

m=1

1
p

p
∑

j=1

(

ψ̂m
j − ψj

)2
(6.6)

and shown in Figure 7b. We see that for smaller amounts of contamination MCD performs

the best, closely followed by RAR. But for larger amounts of contamination (≥ 10%) it

is again the RAR procedure which is more accurate. It is remarkable to see that the LS

method yields more precise estimates than the PFA method for the parameters of the factor

model (in presence of contamination), despite of the fact that the latter method exploits the

presence of the specific variances.
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Since the number of replications of the simulation is quite large (M = 4000), the standard

errors of the measures (6.3) to (6.6) are very small. Here they were all smaller than 0.04,

and often much smaller.1 As a conclusion of this simulation experiment, we can say that it

favours the RAR estimator.

7 Applying RAR to the FANOVA Model

The standard model for a two-way table is the ANOVA model

xij = µ + ai + bj + δij (7.1)

where µ is called the overall mean, ai represents the row effect and bj the column effect. In

a classical setup, the row and column effects are assumed to have zero mean. The terms δij

can either be seen as residuals or as interaction terms between rows and columns. Expression

(7.1) is called an additive model. It is however quite possible that the interaction terms δij

still contain some structure that can be described by a factor model δij =
∑k

l=1 λjlfil + εij

as in (1.1), yielding the overall model

xij = µ + ai + bj + f>i λj + εij. (7.2)

This is the FANOVA model (cfr. Gollob 1968, Denis and Gower 1996, and the references

therein), which combines aspects of analysis of variance and factor analysis. Among others,

Gabriel (1978) considered models like (7.2) and estimated the unknown parameters using a

least squares fit. A first idea would be to proceed sequentially by estimating the additive

model first, and afterwards performing a factor analysis on the residuals. But better fits

can be obtained by estimating all parameters jointly. For the least squares fit there is no

difference between the simultaneous and the sequential approach, but this is no longer true for

the robust fits. Therefore we will estimate additive and multiplicative terms simultaneously.

The RAR estimator for the FANOVA model can be defined as in Section 2. Denote by θ

the vector collecting the scores, loadings, row and column effects and the overall effect µ. In

order to estimate the (k + 1)(n + p) + 1 unknown elements of θ from the np available data

values, we can use the RAR estimator defined as in (2.6):

θ̂RAR = argmin
θ

n
∑

i=1

p
∑

j=1
wi(θ)vj(θ)|xij − x̂ij(θ)| (7.3)

1An exception is the mean squared error of the overall fit for the MCD-based method where the standard

error increases to 0.36 for higher contamination.
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with x̂ij(θ) = µ + ai + bj + f>i λj. The weights wi and vj are defined as in (2.7), and

are downweighting outlying scores and loadings in the k-dimensional spaces of scores and

loadings. To uniquely identify the parameters in (7.2), the function (7.3) will be minimized

under the constraints

med
i

(ai) = med
j

(bj) = 0 and med
i

(fil) = med
j

(λjl) = 0 (7.4)

for l = 1, . . . , k. The constraints (7.4) are consistent with a robust approach. The algorithm

to compute the RAR estimator in FANOVA models is based on alternating regressions, and

is almost identical to the iterative scheme outlined in Section 2. One difference is that,

instead of working with regression through the origin, intercepts need to be estimated as

well. (The S-Plus program for applying RAR to FANOVA models can be retrieved from the

website mentioned before.) In the simplified model (7.1), the RAR approach coincides with

the median polish technique (see Hoaglin, Mosteller and Tukey 1983).

As an example, we consider the logarithm of the real income per capita in 18 European

countries from 1962 to 1994, as obtained from EUROSTAT. (More precisely, this is the

gross domestic product (GDP), deflated by the GDP deflater to get 1990 market prices, and

divided by the population.) Instead of representing the data in an 18 by 33 matrix, Figure

8 plots each row of the data matrix xij as a time series.

Figure 8 is inserted about here.

One sees that there is an upward tendency in each time series, and that some countries

have higher income/capita than others.

We now fit the FANOVA model by means of RAR. Figure 9a shows the row effects âi,

which are country effects: they indicate the deviation of the median level of the i th time

sequence xij from the overall median µ. We observe the highest median level for Switzerland

(CH), while Greece (GR) and Portugal (P) have the lowest income levels. The time effects

b̂j are plotted in Figure 9b as a time series smoothed by the LOESS method of Cleveland

(1979).

Figure 9 is inserted about here.
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We see an increasing trend, corresponding to economic growth in the studied period. Now

denote by yij = exp(xij) the untransformed data. Neglecting the error term for a moment,

the first difference of the sequence of time effects equals

∆bj = bj − bj−1 = log
medi yij

medi yi,j−1
≈ medi yij −medi yi,j−1

medi yi,j−1
. (7.5)

This corresponds to the (relative) growth rate of the median income level over the different

countries. (The approximation ≈ in (7.5) is due to a first order Taylor expansion.) If we

used the purely additive model (7.1) then we would believe that the expected growths for

all individual countries are the same, and equal to ∆bj. This would imply that the data

in Figure 8 could be modeled by a collection of parallel curves, all equal to µ + bj plus a

constant shift term ai. This is clearly not the case. The FANOVA model (7.2) allows to go

beyond the hypothesis of parallel curves, while still remaining parsimonious. (For a similar

reason, but in another context, the FANOVA model was used by Gauch 1988.)

To select the number of factors for the FANOVA model, a measure analogous to (4.1)

has been computed for different values of k. The value R2
RAR(k) measures how much more

variability is explained by adding k factor terms to the purely additive model:

R2
RAR(k) = 1−

(∑n
i=1

∑p
j=1 wivj|xij − x̂ij|

∑n
i=1

∑p
j=1 wivj|xij − x̂0

ij|

)2

(7.6)

where x̂0
ij is the purely additive fit to the data matrix. The obtained values are

k 1 2 3

R2
RAR(k) 0.58 0.80 0.90

indicating that it is quite reasonable to model the interaction terms in (7.3) with two factors.

In Figure 10b the estimated loadings λ̂j are pictured as a time sequence. While Figure 9b

summarized all 18 time series in a single one, Figure 10b gives information about secondary

features of the data. The first sequence of loadings λ̂j1 has an increasing trend and is

almost linear, as was the main time effect. Countries with high values for the first factor

will therefore have a larger slope, and hence a faster growth rate. We see from Figure 10a

that Luxemburg has a quite large growth rate over the period in question, as opposed to

Switzerland (see also Figure 8). The second series of loadings λ̂j2 can be interpreted as the

impact of the global macro-economic evolution: it increases up to 1973 (the oil crisis) and

then goes into a period of recession until the mid-eighties. This second factor corresponds

with our subjective feeling of the evolution of our incomes. In Figure 10a we see that

Belgium, France and West-Germany are close to the center of the plot, indicating that they
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are representative for the evolution of incomes in the 18 countries (not for the absolute levels,

which are captured by the country effects). Greece and Portugal are outlying for the second

factor, and in Figure 8 we indeed see that their growth rate decreased significantly after

1973.

Figure 10 is inserted about here.

8 Conclusions

Many classical techniques of multivariate statistics are based on the sample covariance matrix

Σ̂. Since Σ̂ is very sensitive to outliers, the resulting methods are not robust. One way to

robustify these procedures is to insert a robust covariance matrix instead, as was done in the

context of principal components (e.g. by Devlin et al 1981, Croux and Haesbroeck 2000),

canonical correlations (Croux and Dehon 2002), canonical variates (Campbell 1982) biplots

(Daigle and Rivest 1992) and many other papers (e.g. Visuri et al 2000). In this paper we

propose the RAR method for factor analysis, which works well for both p < n and p ≥ n.

We stress that in many applications p ≥ n, for instance in chemometrics, and that robust

statistical methods are needed. The price we pay for this general applicability is a longer

computation time.

We believe that RAR has many virtues as an estimator and as a data analytic tool. In

the simulation experiment in Section 6, the quality of the fit of the lower rank matrix X̂ to

the data matrix using RAR was shown to be superior. This implies that for the construction

of robust biplots the RAR approach is preferable.

Another advantage of the RAR method is that it can withstand a higher number of

outlying cells than FA based on robust scatter matrix estimators. The approach based on an

α% breakdown scatter matrix estimator and the RAR approach based on an α% breakdown

regression estimator have the same theoretical breakdown value α% for the estimation of

loadings and specific variances, but RAR is more robust in practice. Indeed, if a row (case)

has an outlying cell (coordinate), the robust scatter matrix estimator will declare the entire

row as outlying, and it will not try to fit the other cells of that row. The RAR estimator

will still use the information in those other cells. When the contaminated rows have their

outlying cells in different columns, RAR can withstand more outlying rows than the robust
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scatter approach can. This is analogous to the treatment of missing data in data tables. A

missing cell value should not necessarily imply deletion of all the other cells in that row.

Therefore, the RAR method could also be used for performing factor analysis on data with

missing values.
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Table Captions

Table1: European health and fertility data. The 16 countries are Austria (A), Albania (AL),

Bulgaria (BG), Switzerland (CH), Czechoslovakia (CS), East Germany (DDR), Hungary (H),

Norway (N), Poland (PL), Rumania (RO), Sweden (S), Finland (SF), Soviet Union (SU),

Turkey (TR), Yugoslavia (YU), and the European Community (EU).



Figure Captions

Figure 1: R2-plot and scree R2-plot of the European population data for LS, L1, and the

RAR estimator.

Figure 2: Residual plot of classical FA (left) and RAR (right) for the European health and

fertility data.

Figure 3: Biplot of the European health and fertility data, obtained from classical principal

factor analysis (left) and from RAR (right).

Figure 4: Biplot of the artificial data for classical FA (left) and RAR (right).

Figure 5: Artificial data: residual plot of classical FA (left) and RAR (right).

Figure 6: Quality of the fits under contamination, using (a) the mean squared error criterion,

and (b) the median squared error criterion.

Figure 7: MSE of the estimates of (a) the reduced rank correlation matrix, and (b) the

uniquenesses, under various levels of contamination.

Figure 8: Log Real income per capita of 18 European countries in the years 1962-1994.

Countries are Belgium (B), Denmark (DK), West Germany (D), Greece (GR), Spain (E),

France (F), Ireland (IRL), Italy (I), Luxembourg (L), Netherlands (NL), Portugal (P), United

Kingdom (GB), Switzerland (CH), Austria (A), Norway (N), Sweden (S), Finland (SF), and

Iceland (IS). To avoid overplotting, only six labels are shown here.

Figure 9: Estimated (a) country and (b) time effects of the income/capita data analyzed

with RAR.

Figure 10: Estimated (a) scores and (b) loadings for a two-factor FANOVA model for the

income data, obtained with RAR. The solid line is a smooth fit for the loadings of factor 1

and the dotted line for the loadings of factor 2.



Table 1: European health and fertility data. The 16 countries are Austria (A), Albania (AL),

Bulgaria (BG), Switzerland (CH), Czechoslovakia (CS), East Germany (DDR), Hungary (H),

Norway (N), Poland (PL), Rumania (RO), Sweden (S), Finland (SF), Soviet Union (SU),

Turkey (TR), Yugoslavia (YU), and the European Community (EU).

pop growth women% lifeexp m inhab/doc baby underw

give birth lifeexp f inf mort calorie

A -0.1 48 110 77 70 10 440 3440 6

AL 1.8 50 97 75 68 41 2100 2716 7

BG 0.2 47 101 75 69 15 400 3593 6

CH 0.0 44 103 80 74 7 390 3406 5

CS 0.3 46 105 75 66 14 350 3473 6

DDR 0.0 47 110 75 68 9 490 3769 6

H -0.1 46 106 75 67 19 390 3544 10

N 0.2 48 101 80 74 9 460 3171 4

PL 0.6 48 104 76 68 18 550 3224 8

RO 0.5 47 102 73 68 26 700 3413 6

S 0.0 47 101 80 74 6 410 3007 4

SF 0.2 47 107 79 72 6 460 2961 4

SU 0.7 48 112 73 64 30 270 3332 6

TR 1.9 49 97 67 62 79 1530 3218 8

YU 0.5 51 103 74 68 27 700 3499 7

EU 0.2 48 104 78 73 10 509 3421 5
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Figure 1: R2-plot and scree R2-plot of the European population data for LS, L1, and the

RAR estimator.
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Figure 2: Residual plot of classical FA (left) and RAR (right) for the European health and

fertility data.
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Figure 3: Biplot of the European health and fertility data, obtained from classical principal

factor analysis (left) and from RAR (right).
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Figure 4: Biplot of the artificial data for classical FA (left) and RAR (right).
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Figure 5: Artificial data: residual plot of classical FA (left) and RAR (right).
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Figure 6: Quality of the fits under contamination, using (a) the mean squared error criterion,

and (b) the median squared error criterion.
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Figure 7: MSE of the estimates of (a) the reduced rank correlation matrix, and (b) the

uniquenesses, under various levels of contamination.
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Figure 8: Log Real income per capita of 18 European countries in the years 1962-1994.

Countries are Belgium (B), Denmark (DK), West Germany (D), Greece (GR), Spain (E),

France (F), Ireland (IRL), Italy (I), Luxembourg (L), Netherlands (NL), Portugal (P), United

Kingdom (GB), Switzerland (CH), Austria (A), Norway (N), Sweden (S), Finland (SF), and

Iceland (IS). To avoid overplotting, only six labels are shown here.
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Figure 9: Estimated (a) country and (b) time effects of the income/capita data analyzed

with RAR.
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Figure 10: Estimated (a) scores and (b) loadings for a two-factor FANOVA model for the

income data, obtained with RAR. The solid line is a smooth fit for the loadings of factor 1

and the dotted line for the loadings of factor 2.


