322 research outputs found

    Evolution and structural analysis of Glossina morsitans (Diptera; Glossinidae) Tetraspanins

    Get PDF
    Tetraspanins are important conserved integral membrane proteins expressed in many organisms. Although there is limited knowledge about the full repertoire, evolution and structural characteristics of individual members in various organisms, data obtained so far show that tetraspanins play major roles in membrane biology, visual processing, memory, olfactory signal processing, and mechanosensory antennal inputs. Thus, these proteins are potential targets for control of insect pests. Here, we report that the genome of the tsetse fly, Glossina morsitans (Diptera: Glossinidae) encodes at least seventeen tetraspanins (GmTsps), all containing the signature features found in the tetraspanin superfamily members. Whereas six of the GmTsps have been previously reported, eleven could be classified as novel because their amino acid sequences do not map to characterized tetraspanins in the available protein data bases. We present a model of the GmTsps by using GmTsp42Ed, whose presence and expression has been recently detected by transcriptomics and proteomics analyses of G. morsitans. Phylogenetically, the identified GmTsps segregate into three major clusters. Structurally, the GmTsps are largely similar to vertebrate tetraspanins. In view of the exploitation of tetraspanins by organisms for survival, these proteins could be targeted using specific antibodies, recombinant large extracellular loop (LEL) domains, small-molecule mimetics and siRNAs as potential novel and efficacious putative targets to combat African trypanosomiasis by killing the tsetse fly vector

    Pitx2 Expression Defines a Left Cardiac Lineage of Cells: Evidence for Atrial and Ventricular Molecular Isomerism in the iv/iv Mice

    Get PDF
    AbstractThe homeobox gene Pitx2 has been characterized as a mediator of left-right signaling in heart, gut, and lung morphogenesis. However, the relationship between the developmental role of Pitx2 and its expression pattern at the organ level has not been explored. In this study we focus on the role of Pitx2 in heart morphogenesis. Chicken Pitx2 transcripts are present in the left portion of the cardiac crescent and in the left side of the heart tube. Through looping Pitx2 is present in the left atrium, in the ventral portion of the ventricles and in the left-ventral part of the outflow tract. Mouse Pitx2 shows a similar developmental profile of expression. To test whether Pitx2 represents a lineage marker we have tagged the left portion of the chicken cardiac tube with fluorescent DiD. Labeled cells were found at HH16 in the left atrium and in the ventral region of the ventricles and the outflow tract. In the iv/iv mouse model of cardiac heterotaxia Pitx2 was abnormally expressed in the atrial and in the ventricular chambers. Furthermore, altered Pitx2 expression correlated with the occurrence of DORV. Our data reveal the existence of molecular isomerism not only in the atrial, but also in the ventricular compartment of the heart

    Chamber Formation and Morphogenesis in the Developing Mammalian Heart

    Get PDF
    AbstractIn this study we challenge the generally accepted view that cardiac chambers form from an array of segmental primordia arranged along the anteroposterior axis of the linear and looping heart tube. We traced the spatial pattern of expression of genes encoding atrial natriuretic factor, sarcoplasmic reticulum calcium ATPase, Chisel, Irx5, Irx4, myosin light chain 2v, and Ī²-myosin heavy chain and related these to morphogenesis. Based on the patterns we propose a two-step model for chamber formation in the embryonic heart. First, a linear heart forms, which is composed of ā€œprimaryā€ myocardium that nonetheless shows polarity in phenotype and gene expression along its anteroposterior and dorsoventral axes. Second, specialized ventricular chamber myocardium is specified at the ventral surface of the linear heart tube, while distinct left and right atrial myocardium forms more caudally on laterodorsal surfaces. The process of looping aligns these primordial chambers such that they face the outer curvature. Myocardium of the inner curvature, as well as that of inflow tract, atrioventricular canal, and outflow tract, retains the molecular signature originally found in linear heart tube myocardium. Evidence for distinct transcriptional programs which govern compartmentalization in the forming heart is seen in the patterns of expression of Hand1 for the dorsoventral axis, Irx4 and Tbx5 for the anteroposterior axis, and Irx5 for the distinction between primary and chamber myocardium

    Ventricular function and biomarkers in relation to repair and pulmonary valve replacement for tetralogy of Fallot

    Get PDF
    Objective Cardiac surgery may cause temporarily impaired ventricular performance and myocardial injury. We aim to characterise the response to perioperative injury for patients undergoing repair or pulmonary valve replacement (PVR) for tetralogy of Fallot (ToF). Methods We enrolled children undergoing ToF repair or PVR from four tertiary centres in a prospective observational study. Assessment - including blood sampling and speckle tracking echocardiography - occurred before surgery (T1), at the first follow-up (T2) and 1 year after the procedures (T3). Ninety-two serum biomarkers were expressed as principal components to reduce multiple statistical testing. RNA Sequencing was performed on right ventricular (RV) outflow tract samples. Results We included 45 patients with ToF repair aged 4.3 (3.4 - 6.5) months and 16 patients with PVR aged 10.4 (7.8 - 12.7) years. Ventricular function following ToF repair showed a fall-and-rise pattern for left ventricular global longitudinal strain (GLS) (-18Ā±4 to -13Ā±4 to -20Ā±2, p &lt; 0.001 for each comparison) and RV GLS (-19Ā±5 to -14Ā±4 to 20Ā±4, p &lt; 0.002 for each comparison). This pattern was not seen for patients undergoing PVR. Serum biomarkers were expressed as three principal components. These phenotypes are related to: (1) surgery type, (2) uncorrected ToF and (3) early postoperative status. Principal component 3 scores were increased at T2. This increase was higher for ToF repair than PVR. The transcriptomes of RV outflow tract tissue are related to patients' sex, rather than ToF-related phenotypes in a subset of the study population. Conclusions The response to perioperative injury following ToF repair and PVR is characterised by specific functional and immunological responses. However, we did not identify factors relating to (dis)advantageous recovery from perioperative injury. Trial registration number Netherlands Trial Register: NL5129.</p

    Mkk4 is a negative regulator of the transforming growth factor beta 1 signaling associated with atrial remodeling and arrhythmogenesis with age.

    Get PDF
    BACKGROUND: Atrial fibrillation (AF), often associated with structural, fibrotic change in cardiac tissues involving regulatory signaling mediators, becomes increasingly common with age. In the present study, we explored the role of mitogen-activated protein kinase kinase 4 (Mkk4), a critical component of the stress-activated mitogen-activated protein kinase family, in age-associated AF. METHODS AND RESULTS: We developed a novel mouse model with a selective inactivation of atrial cardiomyocyte Mkk4 (Mkk4(ACKO)). We characterized and compared electrophysiological, histological, and molecular features of young (3- to 4-month), adult (6-month), and old (1-year) Mkk4(ACKO) mice with age-matched control littermates (Mkk4(F/F)). Aging Mkk4(ACKO) mice were more susceptible to atrial tachyarrhythmias than the corresponding Mkk4(F/F) mice, showing characteristic slow and dispersed atrial conduction, for which modeling studies demonstrated potential arrhythmic effects. These differences paralleled increased interstitial fibrosis, upregulated transforming growth factor beta 1 (TGF-Ī²1) signaling and dysregulation of matrix metalloproteinases in Mkk4(ACKO), compared to Mkk4(F/F), atria. Mkk4 inactivation increased the sensitivity of cultured cardiomyocytes to angiotensin II-induced activation of TGF-Ī²1 signaling. This, in turn, enhanced expression of profibrotic molecules in cultured cardiac fibroblasts, suggesting cross-talk between these two cell types in profibrotic signaling. Finally, human atrial tissues in AF showed a Mkk4 downregulation associated with increased production of profibrotic molecules, compared to findings in tissue from control subjects in sinus rhythm. CONCLUSIONS: These findings together demonstrate, for the first time, that Mkk4 is a negative regulator of the TGF-Ī²1 signaling associated with atrial remodeling and arrhythmogenesis with age, establishing Mkk4 as a new potential therapeutic target for treating AF

    The Sensory Consequences of Speaking: Parametric Neural Cancellation during Speech in Auditory Cortex

    Get PDF
    When we speak, we provide ourselves with auditory speech input. Efficient monitoring of speech is often hypothesized to depend on matching the predicted sensory consequences from internal motor commands (forward model) with actual sensory feedback. In this paper we tested the forward model hypothesis using functional Magnetic Resonance Imaging. We administered an overt picture naming task in which we parametrically reduced the quality of verbal feedback by noise masking. Presentation of the same auditory input in the absence of overt speech served as listening control condition. Our results suggest that a match between predicted and actual sensory feedback results in inhibition of cancellation of auditory activity because speaking with normal unmasked feedback reduced activity in the auditory cortex compared to listening control conditions. Moreover, during self-generated speech, activation in auditory cortex increased as the feedback quality of the self-generated speech decreased. We conclude that during speaking early auditory cortex is involved in matching external signals with an internally generated model or prediction of sensory consequences, the locus of which may reside in auditory or higher order brain areas. Matching at early auditory cortex may provide a very sensitive monitoring mechanism that highlights speech production errors at very early levels of processing and may efficiently determine the self-agency of speech input

    Tbx2 and Tbx3 induce atrioventricular myocardial development and endocardial cushion formation

    Get PDF
    A key step in heart development is the coordinated development of the atrioventricular canal (AVC), the constriction between the atria and ventricles that electrically and physically separates the chambers, and the development of the atrioventricular valves that ensure unidirectional blood flow. Using knock-out and inducible overexpression mouse models, we provide evidence that the developmentally important T-box factors Tbx2 and Tbx3, in a functionally redundant manner, maintain the AVC myocardium phenotype during the process of chamber differentiation. Expression profiling and ChIP-sequencing analysis of Tbx3 revealed that it directly interacts with and represses chamber myocardial genes, and induces the atrioventricular pacemaker-like phenotype by activating relevant genes. Moreover, mutant mice lacking 3 or 4 functional alleles of Tbx2 and Tbx3 failed to form atrioventricular cushions, precursors of the valves and septa. Tbx2 and Tbx3 trigger development of the cushions through a regulatory feed-forward loop with Bmp2, thus providing a mechanism for the co-localization and coordination of these important processes in heart development

    Pioneering disadvantage : consumer reactions to marketing mix strategies / M. Sadiq Sohail and Mohamad Farid Mahmood

    Get PDF
    Prior research has focused on the early entrant advantage, although a growing body of knowledgde suggests suggests that late movers have been outselling pioneers. In this research, the authors examine the issue of a pay phone service provider in Malaysia. In 1990, the company launches its product and creates an industry, but by the turn of the century, it has a meager 17 per cent of the market share. The Paper examines the specific issue of how a market pioneer has been eclipsed. It is hypothesized that the main cause of the declining sales is the in appropriate marketing mix strategies. The major findings based on a survey include consumers' acceptance level of the product, price, place, promotion, people, process and physical evidence strategies of the company

    Variation in a Left Ventricleā€“Specific Hand1 Enhancer Impairs GATA Transcription Factor Binding and Disrupts Conduction System Development and Function

    Get PDF
    Rationale The ventricular conduction system (VCS) rapidly propagates electrical impulses through the working myocardium of the ventricles to coordinate chamber contraction. Genome-wide association studies (GWAS) have associated nucleotide polymorphisms, most are located within regulatory intergenic or intronic sequences, with variation in VCS function. Two highly correlated polymorphisms (r2>0.99) associated with VCS functional variation (rs13165478 and rs13185595) occur 5ā€™ to the gene encoding the bHLH transcription factor HAND1. Objective Here, we test the hypothesis that these polymorphisms influence HAND1 transcription thereby influencing VCS development and function. Methods and Results We employed transgenic mouse models to identify an enhancer that is sufficient for left ventricle (LV) cis-regulatory activity. Two evolutionarily conserved GATA transcription factor cis-binding elements within this enhancer are bound by GATA4 and are necessary for cis-regulatory activity, as shown by in vitro DNA binding assays. CRISPR/Cas9-mediated deletion of this enhancer dramatically reduces Hand1 expression solely within the LV but does not phenocopy previously published mouse models of cardiac Hand1 loss-of-function. Electrophysiological and morphological analyses reveals that mice homozygous for this deleted enhancer display a morphologically abnormal VCS, and a conduction system phenotype consistent with right bundle branch block. Using 1000 Genomes Project data, we identify three additional SNPs, located within the Hand1 LV enhancer, that compose a haplotype with rs13165478 and rs13185595. One of these SNPs, rs10054375, overlaps with a critical GATA cis-regulatory element within the Hand1 LV enhancer. This SNP, when tested in electrophoretic mobility shift assays (EMSA), disrupts GATA4 DNA-binding. Modeling two of these SNPs in mice causes diminished Hand1 expression and mice present with abnormal VCS function. Conclusions Together, these findings reveal that SNP rs10054375, which is located within a necessary and sufficient LV-specific Hand1 enhancer, exhibits reduces GATA DNA-binding in EMSA and this enhancer in total, is required for VCS development and function in mice and perhaps humans

    Differential Expression of Salivary Proteins between Susceptible and Insecticide-Resistant Mosquitoes of Culex quinquefasciatus

    Get PDF
    Background: The Culex quinquefasciatus mosquito, a major pest and vector of filariasis and arboviruses in the tropics, has developed multiple resistance mechanisms to the main insecticide classes currently available in public health. Among them, the insensitive acetylcholinesterase (ace-1(R) allele) is widespread worldwide and confers cross-resistance to organophosphates and carbamates. Fortunately, in an insecticide-free environment, this mutation is associated with a severe genetic cost that can affect various life history traits. Salivary proteins are directly involved in human-vector contact during biting and therefore play a key role in pathogen transmission. Methods and Results: An original proteomic approach combining 2D-electrophoresis and mass spectrometry was adopted to compare the salivary expression profiles of two strains of C. quinquefasciatus with the same genetic background but carrying either the ace-1(R) resistance allele or not (wild type). Four salivary proteins were differentially expressed (> 2 fold, P < 0.05) in susceptible (SLAB) and resistant (SR) mosquito strains. Protein identification indicated that the D7 long form, a major salivary protein involved in blood feeding success, presented lower expression in the resistant strain than the susceptible strain. In contrast, three other proteins, including metabolic enzymes (endoplasmin, triosephosphate isomerase) were significantly over-expressed in the salivary gland of ace-1(R) resistant mosquitoes. A catalogue of 67 salivary proteins of C. quinquefasciatus sialotranscriptome was also identified and described. Conclusion: The "resistance"-dependent expression of salivary proteins in mosquitoes may have considerable impact on biting behaviour and hence on the capacity to transmit parasites/viruses to humans. The behaviour of susceptible and insecticide-resistant mosquitoes in the presence of vertebrate hosts and its impact on pathogen transmission urgently requires further investigation
    • ā€¦
    corecore