114 research outputs found

    Measurement and Control of Single Nitrogen-Vacancy Center Spins above 600 K

    Full text link
    We study the spin and orbital dynamics of single nitrogen-vacancy (NV) centers in diamond between room temperature and 700 K. We find that the ability to optically address and coherently control single spins above room temperature is limited by nonradiative processes that quench the NV center's fluorescence-based spin readout between 550 and 700 K. Combined with electronic structure calculations, our measurements indicate that the energy difference between the 3E and 1A1 electronic states is approximately 0.8 eV. We also demonstrate that the inhomogeneous spin lifetime (T2*) is temperature independent up to at least 625 K, suggesting that single NV centers could be applied as nanoscale thermometers over a broad temperature range.Comment: 8 pages, 5 figures, and 14 pages of supplemental material with additional figures. Title change and minor revisions from previous version. DMT and DJC contributed equally to this wor

    Theoretical model of the dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide

    Full text link
    Dynamic nuclear spin polarization (DNP) mediated by paramagnetic point defects in semiconductors is a key resource for both initializing nuclear quantum memories and producing nuclear hyperpolarization. DNP is therefore an important process in the field of quantum-information processing, sensitivity-enhanced nuclear magnetic resonance, and nuclear-spin-based spintronics. DNP based on optical pumping of point defects has been demonstrated by using the electron spin of nitrogen-vacancy (NV) center in diamond, and more recently, by using divacancy and related defect spins in hexagonal silicon carbide (SiC). Here, we describe a general model for these optical DNP processes that allows the effects of many microscopic processes to be integrated. Applying this theory, we gain a deeper insight into dynamic nuclear spin polarization and the physics of diamond and SiC defects. Our results are in good agreement with experimental observations and provide a detailed and unified understanding. In particular, our findings show that the defects' electron spin coherence times and excited state lifetimes are crucial factors in the entire DNP process

    High fidelity bi-directional nuclear qubit initialization in SiC

    Full text link
    Dynamic nuclear polarization (DNP) is an attractive method for initializing nuclear spins that are strongly coupled to optically active electron spins because it functions at room temperature and does not require strong magnetic fields. In this Letter, we demonstrate that DNP, with near-unity polarization efficiency, can be generally realized in weakly coupled hybrid registers, and furthermore that the nuclear spin polarization can be completely reversed with only sub-Gauss magnetic field variations. This mechanism offers new avenues for DNP-based sensors and radio-frequency free control of nuclear qubits

    Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds

    Full text link
    Using an optical tweezers apparatus, we demonstrate three-dimensional control of nanodiamonds in solution with simultaneous readout of ground-state electron-spin resonance (ESR) transitions in an ensemble of diamond nitrogen-vacancy (NV) color centers. Despite the motion and random orientation of NV centers suspended in the optical trap, we observe distinct peaks in the measured ESR spectra qualitatively similar to the same measurement in bulk. Accounting for the random dynamics, we model the ESR spectra observed in an externally applied magnetic field to enable d.c. magnetometry in solution. We estimate the d.c. magnetic field sensitivity based on variations in ESR line shapes to be ~50 microTesla/Hz^1/2. This technique may provide a pathway for spin-based magnetic, electric, and thermal sensing in fluidic environments and biophysical systems inaccessible to existing scanning probe techniques.Comment: 29 pages, 13 figures for manuscript and supporting informatio

    Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon interface

    Full text link
    The divacancies in SiC are a family of paramagnetic defects that show promise for quantum communication technologies due to their long-lived electron spin coherence and their optical addressability at near-telecom wavelengths. Nonetheless, a mechanism for high-fidelity spin-to-photon conversion, which is a crucial prerequisite for such technologies, has not yet been demonstrated. Here we demonstrate a high-fidelity spin-to-photon interface in isolated divacancies in epitaxial films of 3C-SiC and 4H-SiC. Our data show that divacancies in 4H-SiC have minimal undesirable spin-mixing, and that the optical linewidths in our current sample are already similar to those of recent remote entanglement demonstrations in other systems. Moreover, we find that 3C-SiC divacancies have millisecond Hahn-echo spin coherence time, which is among the longest measured in a naturally isotopic solid. The presence of defects with these properties in a commercial semiconductor that can be heteroepitaxially grown as a thin film on shows promise for future quantum networks based on SiC defects.Comment: 26 pages, 4 figure

    Stark Tuning and Electrical Charge State Control of Single Divacancies in Silicon Carbide

    Full text link
    Neutrally charged divacancies in silicon carbide (SiC) are paramagnetic color centers whose long coherence times and near-telecom operating wavelengths make them promising for scalable quantum communication technologies compatible with existing fiber optic networks. However, local strain inhomogeneity can randomly perturb their optical transition frequencies, which degrades the indistinguishability of photons emitted from separate defects, and hinders their coupling to optical cavities. Here we show that electric fields can be used to tune the optical transition frequencies of single neutral divacancy defects in 4H-SiC over a range of several GHz via the DC Stark effect. The same technique can also control the charge state of the defect on microsecond timescales, which we use to stabilize unstable or non-neutral divacancies into their neutral charge state. Using fluorescence-based charge state detection, we show both 975 nm and 1130 nm excitation can prepare its neutral charge state with near unity efficiency.Comment: 12 pages, 4 figure

    Optical polarization of nuclear spins in silicon carbide

    Get PDF
    We demonstrate optically pumped dynamic nuclear polarization of 29-Si nuclear spins that are strongly coupled to paramagnetic color centers in 4H- and 6H-SiC. The 99 +/- 1% degree of polarization at room temperature corresponds to an effective nuclear temperature of 5 microKelvin. By combining ab initio theory with the experimental identification of the color centers' optically excited states, we quantitatively model how the polarization derives from hyperfine-mediated level anticrossings. These results lay a foundation for SiC-based quantum memories, nuclear gyroscopes, and hyperpolarized probes for magnetic resonance imaging.Comment: 21 pages including supplementary information; four figures in main text and one tabl

    Respiratory gas kinetics in patients with congestive heart failure during recovery from peak exercise

    Get PDF
    Background: Cardiopulmonary Exercise Testing (CPX) is essential for the assessment of exercise capacity for patients with Chronic Heart Failure (CHF). Respiratory gas and hemodynamic parameters such as Ventilatory Efficiency (VE/VCO2 slope), peak oxygen uptake (peak VO2), and heart rate recovery are established diagnostic and prognostic markers for clinical populations. Previous studies have suggested the clinical value of metrics related to respiratory gas collected during recovery from peak exercise, particularly recovery time to 50% (T1/2) of peak VO2. The current study explores these metrics in detail during recovery from peak exercise in CHF. Methods: Patients with CHF who were referred for CPX and healthy individuals without formal diagnoses were assessed for inclusion. All subjects performed CPX on cycle ergometers to volitional exhaustion and were monitored for at least five minutes of recovery. CPX data were analyzed for overshoot of respiratory exchange ratio (RER=VCO2/VO2), ventilatory equivalent for oxygen (VE/VO2), end-tidal partial pressure of oxygen (PETO2), and T1/2 of peak VO2 and VCO2. Results: Thirty-two patients with CHF and 30 controls were included. Peak VO2 differed significantly between patients and controls (13.5 ± 3.8 vs. 32.5 ± 9.8 mL/Kg*min−1, p < 0.001). Mean Left Ventricular Ejection Fraction (LVEF) was 35.9 ± 9.8% for patients with CHF compared to 61.1 ± 8.2% in the control group. The T1/2 of VO2, VCO2 and VE was significantly higher in patients (111.3 ± 51.0, 132.0 ± 38.8 and 155.6 ± 45.5s) than in controls (58.08 ± 13.2, 74.3 ± 21.1, 96.7 ± 36.8s; p < 0.001) while the overshoot of PETO2, VE/VO2 and RER was significantly lower in patients (7.2 ± 3.3, 41.9 ± 29.1 and 25.0 ± 13.6%) than in controls (10.1 ± 4.6, 62.1 ± 17.7 and 38.7 ± 15.1%; all p < 0.01). Most of the recovery metrics were significantly correlated with peak VO2 in CHF patients, but not with LVEF. Conclusions: Patients with CHF have a significantly blunted recovery from peak exercise. This is reflected in delays of VO2, VCO2, VE, PETO2, RER and VE/VO2, reflecting a greater energy required to return to baseline. Abnormal respiratory gas kinetics in CHF was negatively correlated with peak VO2 but not baseline LVEF

    Value of Strain Imaging and Maximal Oxygen Consumption in Patients With Hypertrophic Cardiomyopathy

    Get PDF
    Longitudinal strain (LS) has been shown to be predictive of outcome in hypertrophic cardiomyopathy (HC). Percent predicted peak oxygen uptake (ppVO2), among other cardiopulmonary exercise testing (CPX) metrics, is a strong predictor of prognosis in HC. However, there has been limited investigation into the combination of LS and CPX metrics. This study sought to determine how LS and parameters of exercise performance contribute to prognosis in HC. One hundred and thirty-one consecutive patients with HC who underwent CPX and stress echocardiography were included. Global, septal, and lateral LS were assessed at rest and stress. Eighty matched individuals were used as controls. Patients were followed for the composite end point of death and worsening heart failure. All absolute LS components were lower in patients with HC than in controls (global 14.3\u2009\ub1\u20094.0% vs 18.8\u2009\ub1\u20092.2%, p 52\u2009ml/m2, and ppVO2 <80%. The combination of lateral LS, LAVI, and ppVO2 presents a simple model for outcome prediction
    corecore