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Abstract  
 
Longitudinal strain (LS) has been shown to be predictive of outcome in hypertrophic 

cardiomyopathy (HCM). Percent predicted peak oxygen uptake (ppVO2), among other 

cardiopulmonary exercise testing (CPX) metrics, is a very strong predictor of prognosis. 

However, there has been limited investigation into the combination of LS and CPX metrics. 

This study sought to determine how LS contributes to parameters of exercise performance 

for prognosis in HCM. One hundred and thirty-one consecutive patients with HCM who 

underwent CPX with simultaneous stress echocardiography were included. Global, septal 

and lateral LS were assessed at rest and stress. Eighty matched individuals were used as 

controls. Patients were followed for the composite endpoint of death and worsening heart 

failure (HF). All absolute LS components were lower in patients with HCM compared to 

controls (global 14.3±4.0% vs 18.8±2.2%, p<0.001; septal 11.9±4.9% vs 17.9±2.7%, p<0.001; 

lateral 16.0±4.7% vs 19.4±3.1%, p=0.001). Global strain reserve was also reduced among 

patients with HCM (13±5% vs 19±8%, p=0.002). Over a median follow-up of 56 months (IQR 

14-69), the composite endpoint occurred in 53 patients. Global LS was predictive of 

outcome on univariate analysis (0.55[0.41-0.74], p<0.001). When combined with CPX 

metrics, lateral LS was the only independent predictor of outcome among strain variables 

along with indexed left atrial volume (LAVI) and ppVO2. The worst outcomes were observed 

for patients with lateral LS<16.1%, LAVI>52ml/m2 and ppVO2<80%. Patients with HCM have 

decreased strain reserve when compared to controls. The combination of lateral LS, LAVI 

and ppVO2 presents a simple model for outcome prediction.  

Keywords: Hypertrophic Cardiomyopathy, Cardiopulmonary exercise testing, Contractile 

Reserve, Deformation imaging 
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Introduction  

Hypertrophic Cardiomyopathy (HC) is an inherited disease characterized by a variable 

clinical course. Advances in primary prevention of sudden cardiac death (SCD) have 

simultaneously improved arrhythmic outcomes and increased the impact of chronic heart 

failure (HF)-related outcomes.1, 2 Among predictors of outcome in HC, magnitude of 

hypertrophy, left atrial volume, left ventricular outflow tract (LVOT) obstruction, 

hypotensive response to exercise and peak oxygen uptake (peak VO2) have emerged as the 

strongest.3-9 Myocardial fibrosis, myocyte disarray and altered sarcomere kinetics typically 

affect myocardial mechanics in the early phases of HC with preserved LV ejection fraction 

(LVEF) which has led to an interest in strain echocardiography.10 Longitudinal strain (LS), has 

demonstrated strong predictive value in myocardial diseases, including HC, which has 

recently been associated with a higher risk of adverse cardiovascular events.4, 11, 12 Regional 

components of LS and augmentation with exercise (contractile reserve) has not been well 

studied in HC.13 Moreover, there has been limited investigation into integration of CPX with 

strain echocardiography.14, 15 The current study explores the implication of the 

complementarity of CPX and echocardiography in risk modeling of HF events in HC. 

Methods 

In 2007, Stanford University established the Stanford Exercise Testing (SET) Registry, 

where patients who have obtained simultaneous stress echocardiography with CPX are 

included. For this study, approved by the University’s Institutional Review Board, we 

screened the SET registry from January 1st 2007 and January 1st 2012. Patients were 

included if they had a diagnosis of HC as defined by  (a) the presence of significant LV 

hypertrophy (end-diastolic wall thickness >15 mm in M-mode or 2D echocardiography) in 

the absence of other etiologies, or (b) wall thickness between 13 and 15 mm in the presence 
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of abnormal electrocardiography or family history of inherited cardiomyopathy and (c) had 

simultaneous CPX and echocardiogram.3 Patients were not included if they (a) had 

documented prolonged systemic hypertension, (b) previous alcohol ablation or septal 

myectomy, (c) poor image quality on either rest or stress echocardiography or (d) less than 

12 months follow up. Data were collected during the outpatient visit on the day of 

CPX/echocardiography. For comparison to the HC cohort, 80 contemporary participants 

who underwent stress echocardiogram and had (a) normal resting LVEF, (b) normal rest and 

stress wall motion and (c) no hemodynamically significant valvular disease were included. 16 

These controls were excluded if they had (a) left ventricular hypertrophy, (b) significant ST 

changes or arrhythmias, (c) exaggerated blood pressure response to exercise or (d) 

functional capacity less than 90% of normal.17  The primary end-point for outcome analysis 

was a composite of death and worsening HF  (cardiac transplantation, NYHA III-IV class 

progression leading to hospitalization). Outcomes were assessed by two cardiologists 

independently using computerized medical records.  

All patients underwent baseline resting echocardiography (iE33; Philips Medical 

Imaging, Eindhoven, the Netherlands). Stress images were acquired immediately post-

exercise, with the apical 4 chamber acquired first and thus used to calculate measures of 

longitudinal strain. Images were analyzed by the Stanford Cardiovascular Institute Clinical 

Biomarker and Phenotype Core Laboratory on Xcelera workstations in accordance with 

published guidelines from the American Society of Echocardiography (ASE).16, 18 Two 

experienced cardiologists independently analyzed the acquired images, and were blinded to 

the results of the CPX metrics and clinical outcomes. LVEF was calculated by manual 

contouring of apical 4-chamber imaging. GLS was calculated on manual tracings of the mid-

wall with the Lagrangian Strain Formula [(L1 - L0)/L0] x 100.19 Lateral strain and septal strain 
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were calculated with the same technique, however, the mid-wall length was assessed from 

the lateral annulus to apex and mitral annulus to apex, respectively (Figure 1). We present 

strain data in absolute values.4, 11 With tissue Doppler imaging, we used peak myocardial 

early diastolic velocity at the lateral mitral annulus and the assessment of trans-mitral to 

tissue Doppler imaging early diastolic velocity ratio (E/e’). Left atrial volume was calculated 

in the apical 4-chamber view at end systole then indexed to body surface area (LAVI). 

Systolic left ventricular gradient was quantified using the continuous-Doppler technique. A 

peak gradient >30mmHg at rest was considered significant.7 Mitral regurgitation severity 

was assessed according to current guidelines.20 Regarding measurement of reserve, 

absolute change (peak–rest) and relative change [(peak-rest)/peak) x 100] were calculated 

for LVEF and each component of LS. 

Symptom-limited CPX was performed on a treadmill (Trackmaster by FullVision, 

Kansas, USA) with an integrated metabolic cart (Quark CPET, CosMed USA Inc, Concord, CA, 

USA), using breath-by-breath data capture and analysis with an individualized RAMP 

treadmill protocol.21 Minute ventilation (VE), oxygen uptake (VO2), carbon dioxide 

production (VCO2), and other CPX variables were acquired breath by breath and averaged 

over 20 second intervals for interpretation. VE and VCO2 responses throughout exercise 

were used to calculate the VE/VCO2 slope via least squares linear regression.22 To correct for 

differences in age and gender, the ppVO2 was calculated using the Wasserman formula.23 

The achievement of a respiratory exchange ratio (VCO/VO2) of 1.05 and perceived exertion 

>16, (6-20 scale) were used to determine peak effort. A continuous 12-lead 

electrocardiogram was obtained with recordings at rest, each minute during exercise and 

for at least five minutes during recovery from exercise. 
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Baseline characteristics were expressed as mean ± SD for parametrically distributed 

values and as median and IQR for non-parametrically distributed variables. Categorical 

variables are presented as frequencies and/or percentages. To investigate differences 

between the HC cohort and the controls, independent-sample t-tests were performed. 

Linear regression analysis was used to determine independent associations between 

echocardiographic and CPX variables. The associations between clinical, echocardiographic, 

CPX variables and outcome were analyzed using Cox proportional hazards models. Variables 

significantly associated with the composite outcome from univariate analysis were selected 

for entry into a multivariate model and corrected age and gender. Multivariate models were 

performed using stepwise elimination in separate blocks (echocardiographic with global and 

regional strain and CPX variables). Cumulative rates of the composite endpoint as a function 

of time were obtained by the Kaplan-Meier method and compared using the log-rank test. 

Cut-offs were derived from receiver operating characteristic (ROC) curves of our cohort and 

compared to current population data. Inter-observer variability was quantified for 

echocardiographic measurements using mean differences intra class correlation coefficient 

and the Bland-Altman method (bias) (Supplementary Table 1). Analyses were performed 

using MedCalc version 15.8 and RStudio Version 1.0.136 – © 2009-2016 RStudio, Inc. 

Results 

One hundred and thirty-one consecutive patients were enrolled with baseline 

characteristics summarized in Table 1. Baseline demographics of controls are provided in 

Supplementary Table 2.  Complete echocardiographic assessment was available in all 

patients at rest. Of the HC patients 7 (6%) had reduced image quality with stress that 

precluded accurate LS evaluation. Table 2 and Figure 2 show the values of rest and post-

exercise septal, lateral and global LS with HC patients having significant lower values for all 
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components of strain (p<0.001). Exercise was associated with a significant increase in LS, 

both in the HC cohort and controls (p<0.001) however, relative strain reserve was reduced 

in patients with HC (13 ± 5% vs 19 ± 8%, p =0.002).  

There was no correlation between septal wall thickness and septal LS (r=0.12, 

p=0.25) or posterior wall thickness and lateral LS (r=0.01, p=0.90). There was a moderate 

correlation between septal and lateral LS (r=0.51, p<0.001). LS metrics showed weak 

correlations (Supplementary Figure 1) with other echocardiographic variables and CPX 

metrics. Of the echocardiographic variables, e’ showed the highest correlation with ppVO2 

(r=0.31, p<0.001). 

During a median follow-up of 56 months (IQR 15-68) the composite primary 

outcome occurred in 53 patients (6 deaths and 47 worsening HF). Parameters significantly 

associated with outcome at univariate analysis (Table 3), were placed in each of our 

multivariate models (Table 4). When combined with established echocardiographic metrics, 

of strain variables, only lateral LS was independently associated with the primary outcome. 

While peak strain was associated with outcome at univariate analysis these variables were 

not retain when combined with rest parameters in our multivariate models.  Among the CPX 

variables, only ppVO2 was statistically significantly associated with the primary end-point, 

whereas a borderline association was observed for the VE/VCO2 slope. A single multivariate 

model incorporating lateral LS along with ppVO2 and LAVI was found to be predictive of the 

primary outcome (x2 = 39, p <0.001). Using the variables independently associated with 

outcome, those patients with LAVI > 52ml/m2, lateral LS < 16.1% and ppVO2 < 80% had a 

poorer prognosis (p<0.001). As seen in Figure 3 the presence of one, two, and three risk 

factors each increased risk of the composite outcome (log rank p<0.001).  When events in 
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the first year of follow up were censored, the differences in outcome among patients with 

these risk factors remained (Supplementary Figure 1).  

Discussion 

The main findings of this paper are threefold. First, we show that LS reserve is 

significantly reduced in patients with HC and is only weakly associated with measures of 

exercise performance. Second, we validate recent findings that show LS is a major predictor 

of HF outcomes in HC patients. Third, our findings highlight that a simple combination of LS, 

LAVI and ppVO2 may discriminate HF and survival outcomes in HC patients.  

Contractile reserve has been poorly investigated in HC, partially due to patients often 

having a supranormal LVEF at rest and the LVOT flow being distorted by obstruction. 

Deformation imaging in HC has been investigated in recent studies, demonstrating a close 

relationship to clinical outcome.4, 24, 25 Multiple pathophysiological mechanisms including 

hypertrophy, microvascular ischemia, myocardial fibrosis and sarcomere dysfunction may 

underlie reduction in GLS and ultimately contribute to overt HF.10, 26
 Our study of 131 

patients has shown that high-quality assessment of GLS at peak exercise intensities is 

feasible. We were also able to assess reserve through the relative difference in strain, which 

appeared to be reduced when compared to controls. This validates the findings of Schnell et 

al. who in in a small cohort HC patients (n=25) found an absolute mean change in GLS of 1.9 

(relative change 11%) during exercise testing.27 Resting measures of systolic function and 

reserve in our cohort, as with previous studies in HF only mildly correlated with measures of 

exercise performance, indicating we should consider them complementary in clinical 

assessment or prognostication.  

Despite the underlying pathophysiology, HC is often asymmetric, which led us to 

challenge the use of global metrics. The current study took the preferred measure of systolic 
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function in HC (LS) and explored the benefit of regional strain analysis. It appears that 

regional LS assessment at rest and immediately post exercise is feasible and reproducible in 

individuals with and without HC. The lower absolute mean value and standard deviation of 

septal strain in the HC groups reflects the predominance of septal involvement. These 

characteristics should make septal LS useful as a diagnostic marker, however, not 

necessarily as prognosticator for HF outcome. In our cohort, patients with absolute lateral 

LS <16.1% had a significantly higher rate of adverse events. This may be related to relative 

homogeneity of septal hypertrophy and decreased septal LS even among different 

morphologies of HC. Considering lateral LS and global LS had a similar impact on outcome, 

this might suggest the weight of global LS in influencing prognosis in HC might be driven by 

the lateral component. Further larger studies to evaluate change in lateral LS in HC over 

time will be needed to further support this hypothesis. 

Outcome prediction in HC is complex due to the heterogeneity across recent trials. 

The focus of the current study is on HF outcome, not arrhythmic outcome. Doppler 

assessment of LVOT gradient has been used to risk stratify patients with HC.7 However, the 

interpretation of gradients, particularly during exercise testing, can be complex and prone 

to variability. This has been complicated by the findings of a recent study by Desai et al, 

which showed that asymptomatic patients with greater than 100% ppVO2 had excellent 

outcomes regardless of the degree of LVOT obstruction.28 A higher ppVO2 has also been 

associated with improved outcomes in symptomatic patients (NYHA class II and NYHA III).29  

Our findings are consistent with these recent studies demonstrating that ppVO2 is 

independently and strongly associated with HF outcome, emphasizing the important 

contribution exercise capacity has to the prognosis of patients with HC. The clinical 

implication among the growing body of evidence in HC patients and exercise is that exercise 
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testing with gas analysis (where available) should be strongly considered. Left atrial volume 

also been a consistent marked of outcome in HC.5, 6 It is reassuring  that it performed well 

with regard to outcome in our cohort. One of the important contributions of the current 

study is that a simple combination of complementary variables may capture an important 

component of risk in HC. Our exploratory data suggested that (a) satisfactory exercise 

performance ppVO2, (b) preserved lateral LS and (c) modest or absence of left atrial 

enlargement appears to have the most favourable prognosis.  

The present study should be interpreted in the context of the methodological 

limitations. We did not use automated computationally-derived LS; our lab has previously 

shown good correlation of automated and manual assessment of strain and there was 

excellent inter-reader variability in measures of LVEF and strain.30 This is a single speciality 

centre experience, which introduces an unavoidable selection bias with a likely over-

representation of patients with advanced disease compared to other clinics. However, when 

events were censored during the first year of follow up, our outcome models remained 

unchanged. Furthermore, patients who did not undergo CPX as part their initial evaluation 

were excluded; however, this represented <5% of our cohort. Finally regarding outcome 

analyses, while the lower threshold for ppVO2 has been previously described, it was 

necessary to derive the lower threshold for lateral LS from our dataset. Also, though we had 

a reasonable length of follow up, we had limited number of total events (n=53) and so these 

findings should be viewed as preliminary. In conclusion, strain imaging, both peak and 

regional appears feasible, with HC patients having reduced absolute values and strain 

reserve.  When integrating strain and exercise testing into risk modelling, combining a 

structural (LAVi), functional (LS) and exercise (ppVO2) metric may present a simple model 

for HF outcome prediction.  
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Figure 1- Calculation of longitudinal strain. Longitudinal strain (LS) was calculated from the 

four- chamber view on manual tracings of the mid wall with the formula for Langrangian 

Strain. Lateral and septal LS were calculated by the same technique, however, mid wall 

length was assessed from either septal or lateral mitral annulus to the apex.  

 

Figure 2 – Dynamic changes in longitudinal strain.  LS is shown in controls, n=80 (left) and 

patients with HC, n=124 (right) at rest and immediately post exercise.  

 

Figure 3. Kaplan Meier Curve for risk factor score. Patients are stratified according to LAVI 

(>52ml/m2), lateral LS (<16.1%) and ppVO2 (<80%). Group 1 represents 0 risk factors, group 
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2, 1 risk factor, group 3, 2 risk factors and group 4, 3 risk factors. Each additional factor was 

associated with a significant decrement in prognosis, log rank test p<0.001. 
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Table 1 – Baseline Characteristics  
Variable  Patient Cohort (n=131) 

Age (years) 52 ± 13 

Male  83(63%) 

Body mass index (kg/m2) 29 ± 6 

Family history of sudden cardiac death 36(28%) 

Syncope  34(26%) 

Non sustained ventricular tachycardia   40(30%) 

Atrial Fibrillation  24(18%) 

Resting heart rate (bpm) 67 ± 12 

New York Heart Association Class III  27(21%) 

Systolic blood pressure  (mm Hg) 119 ± 19 

Cardiopulmonary exercise testing  

 Peak heart (bpm) 138±29 

Peak systolic blood pressure (mmHg) 158±27 

Drop in systolic blood pressure with exercise  5 (4%) 

Respiratory exchange ratio  1.10 ± 0.09 

External Workload (METS)  10.3 ± 4.8 

Maximal oxygen consumption (ml/kg/min)  26 ± 11 

Percent predicted maximal oxygen consumption (<80%) 53 (40%) 

Ventilation and carbon dioxide production slope  (>32) 26 (20%) 

Therapy  

 Beta blocker  81(62%) 

Calcium channel blocker  39(30%) 
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Dysopiramide (%) 5(4%) 

ACE Inhibitor or ARB (%) 35(28%) 

Diuretics (%) 8(6%) 

Automatic implantable cardioverter-defibrillator 51(39%) 
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Table 2 – Echocardiographic Measures 

Variable  Patient Cohort 

LV interventricular septum thickness (mm) 18 ± 5 

LV posterior wall thickness (mm) 11 ± 3 

LV end diastolic volume (ml/m2) 86 ± 29 

LV end systolic volume (ml/m2) 28 ± 17 

LV ejection fraction (%) 64 ± 9  

E/e` 12.0 ± 6.7 

e` (cm/sec) 8 ± 3 

Left atrial volume index (ml/m2) 44 ± 17 

Mitral regurgitation  ≥2+  48 (37%) 

LV gradient > 30 mmHg at rest  41 (31%) 

Left ventricular outflow tract gradient post stress (mmHg) 57 ± 52 

Strain assessment (rest n=131, stress n=124)   

Rest global longitudinal strain (%) 14.3 ± 3.9  

Rest septal longitudinal strain  (%) 12.3 ± 4.4  

Rest lateral longitudinal strain (%) 16.1 ± 4.6  

Stress global longitudinal strain (%) 16.8 ± 4.2 

Stress septal longitudinal strain  (%) 14.5 ± 4.6 

Stress lateral longitudinal strain (%) 18.8 ± 5.4 

Relative change global longitudinal strain (%) 13 ± 15 

Relative change septal longitudinal strain (%) 13 ± 26 

Relative change lateral longitudinal strain (%) 12 ± 22 
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Table 3 - Univariate predictors of primary outcome 

Variable HR 95% CI p value  

Rest Echocardiography (n=131)  

       LV interventricular septum thickness  (mm) 1.15 [1.02-1.31] 

[1.00-1.30] 

[0.95-1.38] 

[1.37-2.10] 

[1.20-1.85] 

[0.35-0.77] 

[1.21-2.03] 

[0.41-0.74] 

[0.37-0.67] 

[0.56-0.99] 

0.026 

LV posterior wall thickness (mm) 1.14 0.059 

LV end systolic volume  (ml/m2) 1.15 0.153 

Left atrial volume index (ml/m2) 1.70 <0.001 

E/e` 1.49 <0.001 

e` (cm/sec) 0.52 0.004 

Left ventricular outflow gradient (>30mmHg) 1.57 0.001 

Global longitudinal strain  (%) 0.55 <0.001 

Lateral longitudinal strain   (%) 0.50 <0.001 

Septal longitudinal strain  (%) 0.75 0.043 

Stress Echocardiography (n=124)   

       Strain reserve  0.94 [0.69-1.27] 

[0.42-0.74] 

[0.42-0.75] 

[0.49-0.91] 

0.700 

Global longitudinal strain   (%) 0.56 <0.001 

Lateral longitudinal strain   (%) 0.56 <0.001 

Septal longitudinal strain  (%) 0.66 0.010 

CPX (n=131) 

       Peak heart rate (bpm) 0.70 [0.42-0.75] 

[0.44-0.76] 

[0.41-0.75] 

[0.42-0.76] 

0.026 

Peak systolic blood pressure (mmHg) 0.62 0.002 

External workload (METS)  0.55 <0.001 

Maximum oxygen consumption (ml/kg/min) 0.57 <0.001 
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Percent predicted maximum oxygen consumption (%) 0.59 [0.46-0.76] 

[1.25-1.96] 

<0.001 

Ventilation and carbon dioxide production slope  1.57 <0.001 

Hazard ratios adjusted for standard deviation. 
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Table 4 – Multivariate Cox Regression Analysis for primary outcome. 

 
                                       Global 

 
                          Regional 

    HR 95% CI 
p 
value    HR 95% CI 

p 
value  

Rest 

Left atrial volume index 

1.4
7 

1.12-
1.94 0.005 Left atrial volume index 

1.5
3 

1.18-
1.99 0.001 

e` 

0.5
9 

0.39-
0.93 0.023 e` 

0.6
3 

0.41-
0.99 0.047 

Global longitudinal strain 

0.7
0 

0.49-
1.03 0.072 Lateral Longitudinal strain  

0.6
1 

0.42-
0.89 0.009 

      x2=23       x2=27 

CPX 

Percent Predicted maximal oxygen 
consumption 

0.5
6 

0.45-
0.78 0.001         

VE/VCO2 

1.3
1 

1.00-
1.70 0.500 

          x2=27         

Integrate
d Model  

Left atrial volume index  

1.4
4 

1.11-
1.87 0.006 Left atrial volume index 

1.5
1 

1.15-
1.99 0.008 

Global longitudinal strain 

1.2
7 

0.94-
1.73 0.119 Lateral longitudinal strain  0.9 

0.84-
0.96 0.020 

Percent Predicted maximal oxygen 
consumption 

0.6
2 

0.44-
0.88 0.007 

Percent Predicted maximal oxygen 
consumption 

0.6
4 

0.44-
0.94 0.040 

      x2=34       x2=39 
All models are adjusted for age and gender. Hazard ratios adjusted for standard deviation. 
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