173 research outputs found

    Relationship of acute axonal damage, Wallerian degeneration, and clinical disability in multiple sclerosis

    Get PDF
    NPY-Y1R+ axon undergoing Wallerian degeneration do not co-localize with hypophosphorylated and low-molecular-weight NF in EAE. Double-labeling fluorescent IHC reveals that NPY-Y1R+ degenerating axons are only rarely labeled with antibodies recognizing hypophosphorylated NF (SMI35) (A-C). No colocalization is observed with the 68 kDa low-molecular-weight NF (D-F) in WT EAE lesional and perilesional tissue. Scale bars=(A-F) 100 μm. (JPG 343 kb

    Targeted and non-targeted proteomics to characterize the parasite proteins of Echinococcus multilocularis metacestodes.

    Get PDF
    The larval stage of the cestode Echinococcus multilocularis is the causative agent of alveolar echinococcosis. To investigate the biology of these stages and to test novel compounds, metacestode cultures represent a suitable in vitro model system. These metacestodes are vesicles surrounded by an envelope formed by the vesicle tissue (VT), which is formed by the laminated and germinal layer, and filled with vesicle fluid (VF). We analyzed the proteome of VF and VT by liquid chromatography tandem mass spectrometry (LC-MS/MS) and identified a total of 2,954 parasite proteins. The most abundant protein in VT was the expressed conserved protein encoded by EmuJ_000412500, followed by the antigen B subunit AgB8/3a encoded by EmuJ_000381500 and Endophilin B1 (protein p29). In VF, the pattern was different and dominated by AgB subunits. The most abundant protein was the AgB8/3a subunit followed by three other AgB subunits. In total, the AgB subunits detected in VF represented 62.1% of the parasite proteins. In culture media (CM), 63 E. multilocularis proteins were detected, of which AgB subunits made up 93.7% of the detected parasite proteins. All AgB subunits detected in VF (encoded by EmuJ_000381100-700, corresponding to AgB8/2, AgB8/1, AgB8/4, AgB8/3a, AgB8/3b, and AgB8/3c) were also found in CM, except the subunit encoded by EmuJ_000381800 (AgB8/5) that was very rare in VF and not detected in CM. The relative abundance of the AgB subunits in VF and CM followed the same pattern. In VT, only the subunits EmuJ_000381500 (AgB8/3a) and EmuJ_000381200 (AgB8/1) were detected among the 20 most abundant proteins. To see whether this pattern was specific to VF from in vitro cultured metacestodes, we analyzed the proteome of VF from metacestodes grown in a mouse model. Here, the AgB subunits encoded by EmuJ_000381100-700 constituted the most abundant proteins, namely, 81.9% of total protein, with the same order of abundance as in vitro. Immunofluorescence on metacestodes showed that AgB is co-localized to calcareous corpuscles of E. multilocularis. Using targeted proteomics with HA-tagged EmuJ_000381200 (AgB8/1) and EmuJ_000381100 (AgB8/2), we could show that uptake of AgB subunits from CM into VF occurs within hours

    Remodeling of Axonal Connections Contributes to Recovery in an Animal Model of Multiple Sclerosis

    Get PDF
    In multiple sclerosis (MS), inflammation in the central nervous system (CNS) leads to damage of axons and myelin. Early during the clinical course, patients can compensate this damage, but little is known about the changes that underlie this improvement of neurological function. To study axonal changes that may contribute to recovery, we made use of an animal model of MS, which allows us to target inflammatory lesions to the corticospinal tract (CST), a major descending motor pathway. We demonstrate that axons remodel at multiple levels in response to a single neuroinflammatory lesion as follows: (a) surrounding the lesion, local interneurons show regenerative sprouting; (b) above the lesion, descending CST axons extend new collaterals that establish a “detour” circuit to the lumbar target area, whereas below the lesion, spared CST axons increase their terminal branching; and (c) in the motor cortex, the distribution of projection neurons is remodeled, and new neurons are recruited to the cortical motor pool. Behavioral tests directly show the importance of these changes for recovery. This paper provides evidence for a highly plastic response of the motor system to a single neuroinflammatory lesion. This framework will help to understand the endogenous repair capacity of the CNS and to develop therapeutic strategies to support it

    Selective vulnerability of different types of commissural neurons for amyloid β-protein-induced neurodegeneration in APP23 mice correlates with dendritic tree morphology

    Get PDF
    The amyloid β-protein (Aβ) is the main component of Alzheimer's disease-related senile plaques. Although Aβ is associated with the development of Alzheimer's disease, it has not been shown which forms of Aβ induce neurodegeneration in vivo and which types of neurons are vulnerable. To address these questions, we implanted DiI crystals into the left frontocentral cortex of APP23 transgenic mice overexpressing mutant human APP (amyloid precursor protein gene) and of littermate controls. Traced commissural neurons in layer III of the right frontocentral cortex were quantified in 3-, 5-, 11- and 15-month-old mice. Three different types of commissural neurons were traced. At 3 months of age no differences in the number of labelled commissural neurons were seen in APP23 mice compared with wild-type mice. A selective reduction of the heavily ramified type of neurons was observed in APP23 mice compared with wild-type animals at 5, 11 and 15 months of age, starting when the first Aβ-deposits occurred in the frontocentral cortex at 5 months. The other two types of commissural neurons did not show alterations at 5 and 11 months. At 15 months, the number of traced sparsely ramified pyramidal neurons was reduced in addition to that of the heavily ramified neurons in APP23 mice compared with wild-type mice. At this time Aβ-deposits were seen in the neo- and allocortex as well as in the basal ganglia and the thalamus. In summary, our results show that Aβ induces progressive degeneration of distinct types of commissural neurons. Degeneration of the most vulnerable neurons starts in parallel with the occurrence of the first fibrillar Aβ-deposits in the neocortex, that is, with the detection of aggregated Aβ. The involvement of additional neuronal subpopulations is associated with the expansion of Aβ-deposition into further brain regions. The vulnerability of different types of neurons to Aβ, thereby, is presumably related to the complexity of their dendritic morpholog

    Targeted and non-targeted proteomics to characterize the parasite proteins of Echinococcus multilocularis metacestodes

    Get PDF
    The larval stage of the cestode Echinococcus multilocularis is the causative agent of alveolar echinococcosis. To investigate the biology of these stages and to test novel compounds, metacestode cultures represent a suitable in vitro model system. These metacestodes are vesicles surrounded by an envelope formed by the vesicle tissue (VT), which is formed by the laminated and germinal layer, and filled with vesicle fluid (VF). We analyzed the proteome of VF and VT by liquid chromatography tandem mass spectrometry (LC-MS/MS) and identified a total of 2,954 parasite proteins. The most abundant protein in VT was the expressed conserved protein encoded by EmuJ_000412500, followed by the antigen B subunit AgB8/3a encoded by EmuJ_000381500 and Endophilin B1 (protein p29). In VF, the pattern was different and dominated by AgB subunits. The most abundant protein was the AgB8/3a subunit followed by three other AgB subunits. In total, the AgB subunits detected in VF represented 62.1% of the parasite proteins. In culture media (CM), 63 E. multilocularis proteins were detected, of which AgB subunits made up 93.7% of the detected parasite proteins. All AgB subunits detected in VF (encoded by EmuJ_000381100–700, corresponding to AgB8/2, AgB8/1, AgB8/4, AgB8/3a, AgB8/3b, and AgB8/3c) were also found in CM, except the subunit encoded by EmuJ_000381800 (AgB8/5) that was very rare in VF and not detected in CM. The relative abundance of the AgB subunits in VF and CM followed the same pattern. In VT, only the subunits EmuJ_000381500 (AgB8/3a) and EmuJ_000381200 (AgB8/1) were detected among the 20 most abundant proteins. To see whether this pattern was specific to VF from in vitro cultured metacestodes, we analyzed the proteome of VF from metacestodes grown in a mouse model. Here, the AgB subunits encoded by EmuJ_000381100–700 constituted the most abundant proteins, namely, 81.9% of total protein, with the same order of abundance as in vitro. Immunofluorescence on metacestodes showed that AgB is co-localized to calcareous corpuscles of E. multilocularis. Using targeted proteomics with HA-tagged EmuJ_000381200 (AgB8/1) and EmuJ_000381100 (AgB8/2), we could show that uptake of AgB subunits from CM into VF occurs within hours

    Innate and adaptive immune responses following PD-L1 blockade in treating chronic murine alveolar echinococcosis.

    Get PDF
    BACKGROUND Programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) immune checkpoint blockade is efficacious in certain cancer therapies. OBJECTIVES The present study aimed to provide a picture about the development of innate and adaptive immune responses upon PD-L1 blockade in treating chronic murine AE. METHODS Immune treatment started at 6 weeks post E. multilocularis-infection, and was maintained for 8 weeks with twice per week anti-PD-L1 administration (intraperitoneal). The study included an outgroup-control with mice perorally medicated with albendazole five days/week, and another one with both treatments combined. Assessment of treatment efficacy was based on determining parasite weight, innate and adaptive immune cell profiles, histopathology, and liver tissue cytokine levels. RESULTS/CONCLUSIONS Findings showed that the parasite load was significantly reduced in response to PD-L1 blockade, and this blockade a) contributed to T cell activity by increasing CD4+ /CD8+ effector T cells, and decreasing Tregs; b) had the capacity to re-store DCs and Kupffer cells/Macrophages; c) suppressed NKT and NK cells; and thus d) lead to an improved control of E. multilocularis infection in mice. This study suggests that the PD-L1 pathway plays an important role by regulating adaptive and innate immune cells against E. multilocularis infection, with significant modulation of tissue inflammation

    SFPQ and Tau: critical factors contributing to rapid progression of Alzheimer's disease

    Get PDF
    Dysfunctional RNA-binding proteins (RBPs) have been implicated in several neurodegenerative disorders. Recently, this paradigm of RBPs has been extended to pathophysiology of Alzheimer's disease (AD). Here, we identified disease subtype specific variations in the RNA-binding proteome (RBPome) of sporadic AD (spAD), rapidly progressive AD (rpAD), and sporadic Creutzfeldt Jakob disease (sCJD), as well as control cases using RNA pull-down assay in combination with proteomics. We show that one of these identified proteins, splicing factor proline and glutamine rich (SFPQ), is downregulated in the post-mortem brains of rapidly progressive AD patients, sCJD patients and 3xTg mice brain at terminal stage of the disease. In contrast, the expression of SFPQ was elevated at early stage of the disease in the 3xTg mice, and in vitro after oxidative stress stimuli. Strikingly, in rpAD patients' brains SFPQ showed a significant dislocation from the nucleus and cytoplasmic colocalization with TIA-1. Furthermore, in rpAD brain lesions, SFPQ and p-tau showed extranuclear colocalization. Of note, association between SFPQ and tau-oligomers in rpAD brains suggests a possible role of SFPQ in oligomerization and subsequent misfolding of tau protein. In line with the findings from the human brain, our in vitro study showed that SFPQ is recruited into TIA-1-positive stress granules (SGs) after oxidative stress induction, and colocalizes with tau/p-tau in these granules, providing a possible mechanism of SFPQ dislocation through pathological SGs. Furthermore, the expression of human tau in vitro induced significant downregulation of SFPQ, suggesting a causal role of tau in the downregulation of SFPQ. The findings from the current study indicate that the dysregulation and dislocation of SFPQ, the subsequent DNA-related anomalies and aberrant dynamics of SGs in association with pathological tau represents a critical pathway which contributes to rapid progression of AD

    Expression of Olig2, Nestin, NogoA and AQP4 have no impact on overall survival in IDH- wildtype glioblastoma

    Get PDF
    Despite many years of research efforts and clinical trials the prognosis of patients diagnosed with glioblastoma remains very poor. The oligodendrocyte transcription factor 2 (Olig2) was identified as a marker for glioma stem cells, which are believed to be responsible for glioma recurrence and therapy resistance. In this retrospective analysis we assessed the prognos- tic value of oligodendroglial and glioma stem cell markers in 113 IDH-wildtype glioblasto- mas. Immunohistochemical staining for Olig2, NogoA, AQP4 and Nestin was performed in combination with sequencing of IDH1 and IDH2 as well as promotor methylation analysis of the MGMT gene. Even though differences in overall survival according to Olig2 expression were observed, univariate and multivariate survival analysis did not reveal a firm significant prognostic impact of Olig2, NogoA, AQP4 or Nestin expression. Additionally, no differences in the expression of these markers depending on clinical status, age or gender were found. The established independent prognostic factors age = 70 and methylated MGMT gene promoter were significant in the multivariate analysis. In conclusion expression of oligodendroglial and glioma stem cell markers do not have an inde- pendent prognostic effect in IDH-wildtype glioblastoma.German Research Foundation/[]/DGF/AlemaniaPublication Fund of Hannover Medical School/[]/MHH/AlemaniaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Sociales::Instituto de Investigaciones Psicológicas (IIP)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Centro de Investigación en Neurociencias (CIN

    Homozygous NMNAT2 mutation in sisters with polyneuropathy and erythromelalgia.

    Get PDF
    We identified a homozygous missense mutation in the gene encoding NAD synthesizing enzyme NMNAT2 in two siblings with childhood onset polyneuropathy with erythromelalgia. No additional homozygotes for this rare allele, which leads to amino acid substitution T94M, were present among the unaffected relatives tested or in the 60,000 exomes of the ExAC database. For axons to survive, axonal NMNAT2 activity has to be maintained above a threshold level but the T94M mutation confers a partial loss of function both in the ability of NMNAT2 to support axon survival and in its enzymatic properties. Electrophysiological tests and histological analysis of sural nerve biopsies in the patients were consistent with loss of distal sensory and motor axons. Thus, it is likely that NMNAT2 mutation causes this pain and axon loss phenotype making this the first disorder associated with mutation of a key regulator of Wallerian-like axon degeneration in humans. This supports indications from numerous animal studies that the Wallerian degeneration pathway is important in human disease and raises important questions about which other human phenotypes could be linked to this gene
    corecore