588 research outputs found

    Mercury in tundra vegetation of Alaska: Spatial and temporal dynamics and stable isotope patterns

    Get PDF
    Vegetation uptake of atmospheric mercury (Hg) is an important mechanism enhancing atmospheric Hg deposition via litterfall and senescence. We here report Hg concentration and pool sizes of different plant functional groups and plant species across nine tundra sites in northern Alaska. Significant spatial differences were observed in bulk vegetation Hg concentrations at Toolik Field station (52 ± 9 μg kg−1), Eight Mile Lake Observatory (40 ± 0.2 μg kg−1), and seven sites along a transect from Toolik Field station to the Arctic coast (36 ± 9 μg kg−1). Hg concentrations in non-vascular vegetation including feather and peat moss (58 ± 6 μg kg−1 and 34 ± 2 μg kg−1, respectively) and brown and white lichen (41 ± 2 μg kg−1 and 34 ± 2 μg kg−1, respectively), were three to six times those of vascular plant tissues (8 ± 1 μg kg−1 in dwarf birch leaves and 9 ± 1 μg kg−1 in tussock grass). A high representation of nonvascular vegetation in aboveground biomass resulted in substantial Hg mass contained in tundra aboveground vegetation (29 μg m−2), which fell within the range of foliar Hg mass estimated for forests in the United States (15 to 45 μg m−2) in spite of much shorter growing seasons. Hg stable isotope signatures of different plant species showed that atmospheric Hg(0) was the dominant source of Hg to tundra vegetation. Mass-dependent isotope signatures (δ202Hg) in vegetation relative to atmospheric Hg(0) showed pronounced shifts towards lower values, consistent with previously reported isotopic fractionation during foliar uptake of Hg(0). Mass-independent isotope signatures (Δ199Hg) of lichen were more positive relative to atmospheric Hg(0), indicating either photochemical reduction of Hg(II) or contributions of inorganic Hg(II) from atmospheric deposition and/or dust. Δ199Hg and Δ200Hg values in vascular plant species were similar to atmospheric Hg(0) suggesting that overall photochemical reduction and subsequent re-emission was relatively insignificant in these tundra ecosystems, in agreement with previous Hg(0) ecosystem flux measurements

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations

    Multiplex primer prediction software for divergent targets

    Get PDF
    We describe a Multiplex Primer Prediction (MPP) algorithm to build multiplex compatible primer sets to amplify all members of large, diverse and unalignable sets of target sequences. The MPP algorithm is scalable to larger target sets than other available software, and it does not require a multiple sequence alignment. We applied it to questions in viral detection, and demonstrated that there are no universally conserved priming sequences among viruses and that it could require an unfeasibly large number of primers (∼3700 18-mers or ∼2000 10-mers) to generate amplicons from all sequenced viruses. We then designed primer sets separately for each viral family, and for several diverse species such as foot-and-mouth disease virus (FMDV), hemagglutinin (HA) and neuraminidase (NA) segments of influenza A virus, Norwalk virus, and HIV-1. We empirically demonstrated the application of the software with a multiplex set of 16 short (10 nt) primers designed to amplify the Poxviridae family to produce a specific amplicon from vaccinia virus

    Monkeypox Disease Transmission in an Experimental Setting: Prairie Dog Animal Model

    Get PDF
    Monkeypox virus (MPXV) is considered the most significant human public health threat in the genus Orthopoxvirus since the eradication of variola virus (the causative agent of smallpox). MPXV is a zoonotic agent endemic to forested areas of Central and Western Africa. In 2003, MPXV caused an outbreak in the United States due to the importation of infected African rodents, and subsequent sequential infection of North American prairie dogs (Cynomys ludovicianus) and humans. In previous studies, the prairie dog MPXV model has successfully shown to be very useful for understanding MPXV since the model emulates key characteristics of human monkeypox disease. In humans, percutaneous exposure to animals has been documented but the primary method of human-to-human MPXV transmission is postulated to be by respiratory route. Only a few animal model studies of MPXV transmission have been reported. Herein, we show that MPXV infected prairie dogs are able to transmit the virus to naive animals through multiple transmission routes. All secondarily exposed animals were infected with MPXV during the course of the study. Notably, animals secondarily exposed appeared to manifest more severe disease; however, the disease course was very similar to those of experimentally challenged animals including inappetence leading to weight loss, development of lesions, production of orthopoxvirus antibodies and shedding of similar levels or in some instances higher levels of MPXV from the oral cavity. Disease was transmitted via exposure to contaminated bedding, co-housing, or respiratory secretions/nasal mucous (we could not definitively say that transmission occurred via respiratory route exclusively). Future use of the model will allow us to evaluate infection control measures, vaccines and antiviral strategies to decrease disease transmission

    Detection of North American orthopoxviruses by real time-PCR

    Get PDF
    The prevalence of North American orthopoxviruses in nature is unknown and may be more difficult to ascertain due to wide spread use of vaccinia virus recombinant vaccines in the wild. A real time PCR assay was developed to allow for highly sensitive and specific detection of North American orthopoxvirus DNA in animal tissues and bodily fluids. This method is based on the amplification of a 156 bp sequence within a myristylated protein, highly conserved within the North American orthopoxviruses but distinct from orthologous genes present in other orthopoxviruses. The analytical sensitivity was 1.1 fg for Volepox virus DNA, 1.99 fg for Skunkpox virus DNA, and 6.4 fg for Raccoonpox virus DNA with a 95% confidence interval. Our assay did not cross-react with other orthopoxviruses or ten diverse representatives of the Chordopoxvirinae subfamily. This new assay showed more sensitivity than tissue culture tests, and was capable of differentiating North American orthopoxviruses from other members of Orthopoxvirus. Thus, our assay is a promising tool for highly sensitive and specific detection of North American orthopoxviruses in the United States and abroad

    Choosing Organic Pesticides over Synthetic Pesticides May Not Effectively Mitigate Environmental Risk in Soybeans

    Get PDF
    Background: Selection of pesticides with small ecological footprints is a key factor in developing sustainable agricultural systems. Policy guiding the selection of pesticides often emphasizes natural products and organic-certified pesticides to increase sustainability, because of the prevailing public opinion that natural products are uniformly safer, and thus more environmentally friendly, than synthetic chemicals. Methodology/Principal Findings: We report the results of a study examining the environmental impact of several new synthetic and certified organic insecticides under consideration as reduced-risk insecticides for soybean aphid (Aphis glycines) control, using established and novel methodologies to directly quantify pesticide impact in terms of biocontrol services. We found that in addition to reduced efficacy against aphids compared to novel synthetic insecticides, organic approved insecticides had a similar or even greater negative impact on several natural enemy species in lab studies, were more detrimental to biological control organisms in field experiments, and had higher Environmental Impact Quotients at field use rates. Conclusions/Significance: These data bring into caution the widely held assumption that organic pesticides are more environmentally benign than synthetic ones. All pesticides must be evaluated using an empirically-based risk assessment
    corecore