19 research outputs found

    Comparing costs for different conservation strategies of garlic (Allium sativum L.) germplasm in genebanks

    Get PDF
    The maintenance of plant genetic resources in living plant collections (genebanks) causes costs due to employment of staff, usage of buildings, equipment and consumables. Since this is especially challenging in vegetatively propagated material, studies were performed for the case of garlic, which is one of the major vegetatively maintained crops in the genebank of IPK Gatersleben. Data were recorded to compare various scenarios of the main strategies field maintenance and cryopreservation. A spreadsheet tool was developed to be used for cost assessment and for drawing conclusions concerning the most effective way of maintenance. Field culture is cheaper in the short term, whereas after a break-even point cryopreservation becomes the more efficient storage method in the long term. This break-even point depends on the particular scenario, which is determined by various factors such as field and in vitro multiplication rates of various genotypes, presence of bulbils in a part of the genepool, the sample size of the accessions as well as the number of stored accessions in cryopreservation. The comparative discussion is exemplified for a 1-year field rotation versus cryopreservation using either in vitro plantlets or a combination of bulbils and unripe inflorescence bases as organ sources. For the more expensive use of in vitro plants cryopreservation becomes less costly than field culture only after 13 years, whereas this is the case already after 8-9 years when using a combination of bulbils in winter and inflorescence bases in summer

    A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes

    Get PDF
    BACKGROUND: Bread wheat is an allopolyploid species with a large, highly repetitive genome. To investigate the impact of selection on variants distributed among homoeologous wheat genomes and to build a foundation for understanding genotype-phenotype relationships, we performed population-scale re-sequencing of a diverse panel of wheat lines. RESULTS: A sample of 62 diverse lines was re-sequenced using the whole exome capture and genotyping-by-sequencing approaches. We describe the allele frequency, functional significance, and chromosomal distribution of 1.57 million single nucleotide polymorphisms and 161,719 small indels. Our results suggest that duplicated homoeologous genes are under purifying selection. We find contrasting patterns of variation and inter-variant associations among wheat genomes; this, in addition to demographic factors, could be explained by differences in the effect of directional selection on duplicated homoeologs. Only a small fraction of the homoeologous regions harboring selected variants overlapped among the wheat genomes in any given wheat line. These selected regions are enriched for loci associated with agronomic traits detected in genome-wide association studies. CONCLUSIONS: Evidence suggests that directional selection in allopolyploids rarely acted on multiple parallel advantageous mutations across homoeologous regions, likely indicating that a fitness benefit could be obtained by a mutation at any one of the homoeologs. Additional advantageous variants in other homoelogs probably either contributed little benefit, or were unavailable in populations subjected to directional selection. We hypothesize that allopolyploidy may have increased the likelihood of beneficial allele recovery by broadening the set of possible selection targets

    Novel Common Genetic Susceptibility Loci for Colorectal Cancer

    Get PDF
    BACKGROUND: Previous genome-wide association studies (GWAS) have identified 42 loci (P < 5 × 10-8) associated with risk of colorectal cancer (CRC). Expanded consortium efforts facilitating the discovery of additional susceptibility loci may capture unexplained familial risk. METHODS: We conducted a GWAS in European descent CRC cases and control subjects using a discovery-replication design, followed by examination of novel findings in a multiethnic sample (cumulative n = 163 315). In the discovery stage (36 948 case subjects/30 864 control subjects), we identified genetic variants with a minor allele frequency of 1% or greater associated with risk of CRC using logistic regression followed by a fixed-effects inverse variance weighted meta-analysis. All novel independent variants reaching genome-wide statistical significance (two-sided P < 5 × 10-8) were tested for replication in separate European ancestry samples (12 952 case subjects/48 383 control subjects). Next, we examined the generalizability of discovered variants in East Asians, African Americans, and Hispanics (12 085 case subjects/22 083 control subjects). Finally, we examined the contributions of novel risk variants to familial relative risk and examined the prediction capabilities of a polygenic risk score. All statistical tests were two-sided. RESULTS: The discovery GWAS identified 11 variants associated with CRC at P < 5 × 10-8, of which nine (at 4q22.2/5p15.33/5p13.1/6p21.31/6p12.1/10q11.23/12q24.21/16q24.1/20q13.13) independently replicated at a P value of less than .05. Multiethnic follow-up supported the generalizability of discovery findings. These results demonstrated a 14.7% increase in familial relative risk explained by common risk alleles from 10.3% (95% confidence interval [CI] = 7.9% to 13.7%; known variants) to 11.9% (95% CI = 9.2% to 15.5%; known and novel variants). A polygenic risk score identified 4.3% of the population at an odds ratio for developing CRC of at least 2.0. CONCLUSIONS: This study provides insight into the architecture of common genetic variation contributing to CRC etiology and improves risk prediction for individualized screenin

    Whole Genome Association Mapping of Plant Height in Winter Wheat (<i>Triticum aestivum</i> L.)

    No full text
    <div><p>The genetic architecture of plant height was investigated in a set of 358 recent European winter wheat varieties plus 14 spring wheat varieties based on field data in eight environments. Genotyping of diagnostic markers revealed the <i>Rht-D1b</i> mutant allele in 58% of the investigated varieties, while the <i>Rht-B1b</i> mutant was only present in 7% of the varieties. <i>Rht-D1</i> was significantly associated with plant height by using a mixed linear model and employing a kinship matrix to correct for population stratification. Further genotyping data included 732 microsatellite markers, resulting in 770 loci, of which 635 markers were placed on the ITMI map plus a set of 7769 mapped SNP markers genotyped with the 90 k iSELECT chip. When Bonferroni correction was applied, a total of 153 significant marker-trait associations (MTAs) were observed for plant height and the SSR markers (−log<sub>10</sub> (P-value) ≄4.82) and 280 (−log<sub>10</sub> (P-value) ≄5.89) for the SNPs. Linear regression between the most effective markers and the BLUEs for plant height indicated additive effects for the MTAs of different chromosomal regions. Analysis of syntenic regions in the rice genome revealed closely linked rice genes related to gibberellin acid (GA) metabolism and perception, i.e. GA20 and GA2 oxidases orthologous to wheat chromosomes 1A, 2A, 3A, 3B, 5B, 5D and 7B, <i>ent</i>-kaurenoic acid oxidase orthologous to wheat chromosome 7A, <i>ent</i>-kaurene synthase on wheat chromosome 2B, as well as GA-receptors like DELLA genes orthologous to wheat chromosomes 4B, 4D and 7A and genes of the GID family orthologous to chromosomes 2B and 5B. The data indicated that besides the widely used GA-insensitive dwarfing genes <i>Rht-B1</i> and <i>Rht-D1</i> there is a wide spectrum of loci available that could be used for modulating plant height in variety development.</p></div

    Coincidences of significant MTAs in our study with QTL or meta-QTL regions described by Griffiths et al. 2012 [54].

    No full text
    <p>Coincidences of significant MTAs in our study with QTL or meta-QTL regions described by Griffiths et al. 2012 <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0113287#pone.0113287-Griffiths1" target="_blank">[54]</a>.</p

    List of the most PH reducing (“best”) and most PH enhancing (“worst”) SNP-alleles.

    No full text
    <p>*Nomenclature according to Sakamoto et al. 2004 <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0113287#pone.0113287-Sakamoto1" target="_blank">[58]</a>.</p><p>List of the most PH reducing (“best”) and most PH enhancing (“worst”) SNP-alleles.</p
    corecore