17 research outputs found

    Calming effect of Clinically Designed Improvisatory Music for patients admitted to the epilepsy monitoring unit during the COVID-19 pandemic: a pilot study

    Get PDF
    BackgroundEpilepsy monitoring requires simulating seizure-inducing conditions which frequently causes discomfort to epilepsy monitoring unit (EMU) patients. COVID-19 hospital restrictions added another layer of stress during hospital admissions. The purpose of this pilot study was to provide evidence that live virtual Clinically Designed Improvisatory Music (CDIM) brings relief to EMU patients for their psychological distress.MethodsFive persons with epilepsy (PWEs) in the EMU during the COVID-19 lockdown participated in the study (average age ± SD = 30.2 ± 6 years). Continuous electroencephalogram (EEG) and electrocardiogram (EKG) were obtained before, during, and after live virtual CDIM. CDIM consisted of 40 minutes of calming music played by a certified clinical music practitioner (CMP) on viola. Post-intervention surveys assessed patients’ emotional state on a 1–10 Likert scale. Alpha/beta power spectral density ratio was calculated for each subject across the brain and was evaluated using one-way repeated analysis of variance, comparing 20 minutes before, during, and 20 minutes after CDIM. Post-hoc analysis was performed using paired t-test at the whole brain level and regions with peak changes.ResultsPatients reported enhanced emotional state (9 ± 1.26), decrease in tension (9.6 ± 0.49), decreased restlessness (8.6 ± 0.80), increased pleasure (9.2 ± 0.98), and likelihood to recommend (10 ± 0) on a 10-point Likert scale. Based on one-way repeated analysis of variance, alpha/beta ratio increased at whole-brain analysis (F3,12 = 5.01, P = 0.018) with a peak in midline (F3,12 = 6.63, P = 0.0068 for Cz) and anterior medial frontal region (F3,12 = 6.45, P = 0.0076 for Fz) during CDIM and showed a trend to remain increased post-intervention.ConclusionIn this pilot study, we found positive effects of CDIM as reported by patients, and an increased alpha/beta ratio with meaningful electroencephalographic correlates due to the calming effects in response to CDIM. Our study provides proof of concept that live virtual CDIM offered demonstrable comfort with biologic correlations for patients admitted in the EMU during the COVID-19 pandemic

    A Specialized Odor Memory Buffer in Primary Olfactory Cortex

    Get PDF
    The neural substrates of olfactory working memory are unknown. We addressed the questions of whether olfactory working memory involves a verbal representation of the odor, or a sensory image of the odor, or both, and the location of the neural substrates of these processes.We used functional magnetic resonance imaging to measure activity in the brains of subjects who were remembering either nameable or unnameable odorants. We found a double dissociation whereby remembering nameable odorants was reflected in sustained activity in prefrontal language areas, and remembering unnameable odorants was reflected in sustained activity in primary olfactory cortex.These findings suggest a novel dedicated mechanism in primary olfactory cortex, where odor information is maintained in temporary storage to subserve ongoing tasks

    Attentional modulation in human primary olfactory cortex

    No full text
    International audienceCentral to the concept of attention is the fact that identical stimuli can be processed in different ways. In olfaction, attention may designate the identical flow of air through the nose as either respiration or olfactory exploration. Here we have used functional magnetic resonance imaging (fMRI) to probe this attentional mechanism in primary olfactory cortex (POC). We report a dissociation in POC that revealed attention-dependent and attention-independent subregions. Whereas a temporal subregion comprising temporal piriform cortex (PirT) responded equally across conditions, a frontal subregion comprising frontal piriform cortex (PirF) and the olfactory tubercle responded preferentially to attended sniffs as opposed to unattended sniffs. In addition, a task-specific anticipatory response occurred in the attention-dependent region only. This dissociation was consistent across two experimental designs: one focusing on sniffs of clean air, the other focusing on odor-laden sniffs. Our findings highlight the role of attention at the earliest cortical levels of olfactory processing

    Anticipation-induced delta phase reset improves human olfactory perception.

    No full text
    Anticipating an odor improves detection and perception, yet the underlying neural mechanisms of olfactory anticipation are not well understood. In this study, we used human intracranial electroencephalography (iEEG) to show that anticipation resets the phase of delta oscillations in piriform cortex prior to odor arrival. Anticipatory phase reset correlates with ensuing odor-evoked theta power and improvements in perceptual accuracy. These effects were consistently present in each individual subject and were not driven by potential confounds of pre-inhale motor preparation or power changes. Together, these findings suggest that states of anticipation enhance olfactory perception through phase resetting of delta oscillations in piriform cortex

    Olfactomotor activity during imagery mimics that during perception

    No full text
    International audienceNeural representations created in the absence of external sensory stimuli are referred to as imagery, and such representations may be augmented by reenactment of sensorimotor processes. We measured nasal airflow in human subjects while they imagined sights, sounds and smells, and only during olfactory imagery did subjects spontaneously enact the motor component of olfaction--that is, they sniffed. Moreover, as in perception, imagery of pleasant odors involved larger sniffs than imagery of unpleasant odors, suggesting that the act of sniffing has a functional role in creating of olfactory percepts
    corecore