4,370 research outputs found

    A qualitative study of children’s snack food packaging perceptions and preferences

    Get PDF
    Background: Food marketing is pervasive in high- and low/middle-income countries and is recognized as a significant risk factor for childhood obesity. Although food packaging is one of the most important marketing tools to persuade consumers at the point-of-sale, scant research has examined how it influences children’s perceptions. This study was conducted in Guatemala and aimed to understand which snack foods are the most frequently purchased by children and how aspects of food packaging influence their product perceptions. Methods: Six activity-based focus groups were conducted in two elementary public schools with thirty-seven children (Grades 1 through 6, age range 7–12 years old). During each focus group, children participated in three activities: 1) list their most frequently purchased food products; 2) select the picture of their favorite product, the packaging they liked best, and the product they thought was the healthiest from eight choices; and 3) draw the package of a new snack. Results: Children reported purchasing salty snacks most frequently. Most children chose their favorite product based on taste perceptions, which can be influenced by food packaging. Visual elements influenced children’s selection of favorite packaging (i.e., characters, colors) and healthiest product (i.e., images), and persuaded some children to incorrectly think certain foods contained healthy ingredients. When children generated their own drawings of a new product, the most frequently included packaging elements in the drawings were product name, price, product image and characters, suggesting those aspects of the food packaging were most significant to them. Conclusions: Policies regulating package content and design are required to discourage consumption of unhealthy snacks. This might be another public health strategy that can aid to halt the obesity epidemic

    Non-Coding RNAs in Cell-to-Cell Communication: Exploiting Physiological Mechanisms as Therapeutic Targets in Cardiovascular Pathologies

    Get PDF
    Cardiovascular disease, the leading cause of death worldwide, has been characterized at the molecular level by alterations in gene expression that contribute to the etiology of the disease. Such alterations have been shown to play a critical role in the development of atherosclerosis, cardiac remodeling, and age-related heart failure. Although much is now known about the cellular and molecular mechanisms in this context, the role of epigenetics in the onset of cardiovascular disease remains unclear. Epigenetics, a complex network of mechanisms that regulate gene expression independently of changes to the DNA sequence, has been highly implicated in the loss of homeostasis and the aberrant activation of a myriad of cellular pathways. More specifically, non-coding RNAs have been gaining much attention as epigenetic regulators of various pathologies. In this review, we will provide an overview of the ncRNAs involved in cell-to-cell communication in cardiovascular disease, namely atherosclerosis, cardiac remodeling, and cardiac ageing, and the potential use of epigenetic drugs as novel therapeutic targets

    Systems Engineering Solution

    Get PDF
    The development and realisation of urban infrastructural projects such as bridges is getting increasingly more difficult and complex to manage. The challenge for the actors to develop an effective solution for the project within the traditional dimensions of time, budget and quality is still very present. But society also calls for more sustainable solutions which minimizes an eventual negative impact on the environment and takes into account the interests of stakeholders. The introduction of national and EU regulated procurement methods such as the Most Economically Advantageous Tenders (MEAT), has opened the way towards a more active and balanced involvement of actors and stakeholders in the development and realisation of urban construction projects. In this new environment, the client, consultant, contractor and stakeholders strive to work together in order to realise a sustainable solution. This document describes a methodology for the management of project processes with the aim of achieving a lawful, effective and sustainable construction process. The methodology is based on the principle of Life Cycle Systems Engineering, and facilitates and structures the introduction of sustainability and stakeholders issues in the design and build process. The method uses manly existing guidelines and standards for Life Cycle Systems Engineering

    Case report of a medication error by look-alike packaging: a classic surrogate marker of an unsafe system

    Get PDF
    Background: The acronym LASA (look-alike sound-alike) denotes the problem of confusing similar- looking and/or sounding drugs accidentally. The most common causes of medication error jeopardizing patient safety are LASA as well as high workload. Case presentation: A critical incident report of medication errors of opioids for postoperative analgesia by lookalike packaging highlights the LASA aspects in everyday scenarios. A change to a generic brand of medication saved costs of up to 16% per annum. Consequently, confusion of medication incidents occurred due to the similar appearance of the newly introduced generic opioid. Due to consecutive underdosing no life-threatening situation arose out of this LASA based medication error. Conclusion: Current recommendations for the prevention of LASA are quite extensive; still, in a system with a lump sum payment per case not all of these security measures may be feasible. This issue remains to be approached on an individual basis, taking into consideration local set ups as well as financial issues

    Growth factors for clinical-scale expansion of human articular chondrocytes : Relevance for automated bioreactor systems

    Get PDF
    The expansion of chondrocytes in automated bioreactors for clinical use requires that a relevant number of cells be generated, starting from variable initial seeding densities in one passage and using autologous serum. We investigated whether the growth factor combination transforming growth factor beta 1/fibroblast growth factor 2/platelet-derived growth factor BB (TFP), recently shown to enhance the proliferation capacity of human articular chondrocytes (HACs), allows the efficiency of chondrocyte use to be increased at different seeding densities and percentages of human serum (HS). HACs were seeded at 1,000, 5,000, and 10,000 celIS/cm(2) in medium containing 10 bovine serum or 10,000 cells/cm(2) with 1 chondrogenic capacity of post-expanded HACs was then assessed in pellet cultures. Expansion with TFP allowed a sufficient number of HACs to be obtained in one passage even at the lowest seeding density and HS percentage and variability in cartilage-forming capacity of HACs expanded under the different conditions to be reduced. Instead, larger variations and insufficient yields were found in the absence of TFP. By allowing large numbers of cells to be obtained, starting from a wide range of initial seeding densities and HS percentages, the use of TFP may represent a viable solution for the efficient expansion of HACs and addresses constraints of automated clinical bioreactor systems

    Role of macrophages in experimental group B streptococcal arthritis.

    Get PDF
    Septic arthritis is a clinical manifestation of group B Streptococcus (GBS) infection in both neonates and adults. Because macrophages are known to participate in tissue injury, the role of this cell population in GBS-induced arthritis was investigated. Mice were rendered monocytopenic by administration of etoposide, a drug that selectively depletes the monocyte/macrophage population and then injected with GBS (1 x 10(7) colony-forming units per mouse). Appearance of arthritis, mortality, GBS growth in the organs, and local and systemic cytokine production were examined. Etoposide-treated mice had a significantly less severe arthritis than control animals. Histopathological analysis of the joints confirmed clinical observations. Decreased joint levels of the proinflammatory cytokines interleukin 1 (IL-1) beta and IL-6 accompanied the less severe development of arthritis in monocytopenic mice. In contrast, mortality was increased in the etoposide-treated mice compared with controls. Monocytopenic mice exhibited elevated bacterial load in the blood and kidneys at all time points examined. These results indicate that lack of macrophages leads to less severe joint lesions, but also results in impaired clearance of bacteria, and consequent enhancement of mortality rates
    • 

    corecore