215 research outputs found

    Female teat size is a reliable indicator of annual breeding success in European badgers: Genetic validation

    No full text
    Assessing which females have bred successfully is a central requirement in many ecological field studies, providing an estimate of the effective female population size. Researchers have applied teat measurements previously to assess whether females, in a variety of mammalian species, have bred; however, this technique has not been validated genetically. Furthermore, several analytical techniques are available to classify individuals, but their misclassification rates have not been compared. We used 22 microsatellite loci to assign maternity, with 95% confidence, within a high-density population of European badgers Meles meles, as plural and subterranean breeding means that maternity cannot be inferred from behavioural observations. The teat lengths and diameters of 136 females, measured May–July 1994–2005, from social groups in which all offspring were assigned a mother, were reliable indicators of recent breeding success. A Generalised Linear Mixed Model (GLMM) classified both breeding and non-breeding females with lower error rates than discriminant analyses and crude teat-size criteria. The GLMM model logit probability = −20 + 1.8 month + 1.6 mean teat length + 1.0 mean teat diameter can be applied quickly in the field to assess the probability with which a female badger should be assigned maternity. This is a low-cost measure which, after validation, could be used in other badger or mammalian populations to assess the breeding success of females. This may be a particularly useful welfare tool for veterinary practitioners, especially during badger culls

    Lip licking behavior in captive Malayan tapirs (Tapirus indicus): manifestation of a stereotypic or stress related response?

    Get PDF
    Malayan tapirs are highly endangered and wild populations are fast declining. Thus, captive breeding programs in zoos and governmental breeding centers are the most promising conservation strategy for this species. Despite being common, lip licking, a type of oral behavior, has received little attention in the past, and impacts on the welfare of captive Malayan tapirs have not been quantified. Here, we videoed the behavior of seven captive tapirs for eight hours per diem (0900 - 1700) using instantaneous sampling for six months to investigate which stressors in captivity (enclosure type, enclosure size, humidity, visitors) cause increased lip licking behavior. We show that lip licking is induced by unsuitable humidity whereby dry humidity below 65% caused a significant increase in this behavior. We found lip licking behavior in tapirs is not a stereotypic behavior, but it may indicate a stress response towards heat. Hence, we suggest that breeding centers re-evaluate their exhibit design and behavioral enrichments, implementing simple design changes that would help to reduce lip licking and consequently increase the welfare of captive Malayan tapirs

    Variations in Badger ( Meles meles

    Get PDF
    Maintaining homeothermy is essential for mammals, but has considerable energetic costs. In this study, we monitored the internal conditions of setts within five European badger (Meles meles) social groups during the cub-rearing season, that is, February to July, in 2004. Sett temperature showed substantial and significant variation over this period, while relative humidity remained stable throughout. Microclimate was least stable during the period for which cubs remain entirely below ground between February and April; however here the instrumented main sett demonstrated a much warmer and more stable temperature regime than did nearby subsidiary outliers. We thus postulate that the energy budget of reproducing females could be affected by even small temperature fluctuations, militating for optimal sett choice. For comparison we also report microclimatic data from two artificial setts and found them to be markedly inferior in terms of thermal insulative properties, suggesting that man-made setts may need more careful consideration in both thermal and spatial setts network in each territory to adequately compensate the loss (e.g., destruction due to development) of a natural sett, especially as a breeding den

    meles) Sett Microclimate: Differential Cub Survival between Main and Subsidiary Setts, with Implications for Artificial Sett Construction

    Get PDF
    Maintaining homeothermy is essential for mammals, but has considerable energetic costs. In this study, we monitored the internal conditions of setts within five European badger (Meles meles) social groups during the cub-rearing season, that is, February to July, in 2004. Sett temperature showed substantial and significant variation over this period, while relative humidity remained stable throughout. Microclimate was least stable during the period for which cubs remain entirely below ground between February and April; however here the instrumented main sett demonstrated a much warmer and more stable temperature regime than did nearby subsidiary outliers. We thus postulate that the energy budget of reproducing females could be affected by even small temperature fluctuations, militating for optimal sett choice. For comparison we also report microclimatic data from two artificial setts and found them to be markedly inferior in terms of thermal insulative properties, suggesting that man-made setts may need more careful consideration in both thermal and spatial setts network in each territory to adequately compensate the loss (e.g., destruction due to development) of a natural sett, especially as a breeding den

    Social effects on age-related and sex-specific immune cell profiles in a wild mammal

    Get PDF
    Evidence for age-related changes in innate and adaptive immune responses is increasing in wild populations. Such changes have been linked to fitness, and knowledge of the factors driving immune response variation is important for understanding the evolution of immunity. Age-related changes in immune profiles may be owing to factors such as immune system development, sex-specific behaviour and responses to environmental conditions. Social environments may also contribute to variation in immunological responses, for example, through transmission of pathogens and stress arising from resource and mate competition. Yet, the impact of the social environment on age-related changes in immune cell profiles is currently understudied in the wild. Here, we tested the relationship between leukocyte cell composition (proportion of neutrophils and lymphocytes [innate and adaptive immunity, respectively] that were lymphocytes) and age, sex and group size in a wild population of European badgers (Meles meles). We found that the proportion of lymphocytes in early life was greater in males in smaller groups compared to larger groups, but with a faster age-related decline in smaller groups. By contrast, the proportion of lymphocytes in females was not significantly related to age or group size. Our results provide evidence of sex-specific age-related changes in immune cell profiles in a wild mammal, which are influenced by the social environment

    Woodland Recovery after Suppression of Deer: Cascade effects for Small Mammals, Wood Mice (Apodemus sylvaticus) and Bank Voles (Myodes glareolus)

    Get PDF
    Over the past century, increases in both density and distribution of deer species in the Northern Hemisphere have resulted in major changes in ground flora and undergrowth vegetation of woodland habitats, and consequentially the animal communities that inhabit them. In this study, we tested whether recovery in the vegetative habitat of a woodland due to effective deer management (from a peak of 0.4–1.5 to <0.17 deer per ha) had translated to the small mammal community as an example of a higher order cascade effect. We compared deer-free exclosures with neighboring open woodland using capture-mark-recapture (CMR) methods to see if the significant difference in bank vole (Myodes glareolus) and wood mouse (Apodemus sylvaticus) numbers between these environments from 2001–2003 persisted in 2010. Using the multi-state Robust Design method in program MARK we found survival and abundance of both voles and mice to be equivalent between the open woodland and the experimental exclosures with no differences in various metrics of population structure (age structure, sex composition, reproductive activity) and individual fitness (weight), although the vole population showed variation both locally and temporally. This suggests that the vegetative habitat - having passed some threshold of complexity due to lowered deer density - has allowed recovery of the small mammal community, although patch dynamics associated with vegetation complexity still remain. We conclude that the response of small mammal communities to environmental disturbance such as intense browsing pressure can be rapidly reversed once the disturbing agent has been removed and the vegetative habitat is allowed to increase in density and complexity, although we encourage caution, as a source/sink dynamic may emerge between old growth patches and the recently disturbed habitat under harsh conditions

    A multi-metric approach to investigate the effects of weather conditions on the demographic of a terrestrial mammal, the European badger (Meles meles)

    Get PDF
    Models capturing the full effects of weather conditions on animal populations are scarce. Here we decompose yearly temperature and rainfall into mean trends, yearly amplitude of change and residual variation, using daily records. We establish from multi-model inference procedures, based on 1125 life histories (from 1987 to 2008), that European badger (Meles meles) annual mortality and recruitment rates respond to changes in mean trends and to variability in proximate weather components. Variation in mean rainfall was by far the most influential predictor in our analysis. Juvenile survival and recruitment rates were highest at intermediate levels of mean rainfall, whereas low adult survival rates were associated with only the driest, and not the wettest, years. Both juvenile and adult survival rates also exhibited a range of tolerance for residual standard deviation around daily predicted temperature values, beyond which survival rates declined. Life-history parameters, annual routines and adaptive behavioural responses, which define the badgers’ climatic niche, thus appear to be predicated upon a bounded range of climatic conditions, which support optimal survival and recruitment dynamics. That variability in weather conditions is influential, in combination with mean climatic trends, on the vital rates of a generalist, wide ranging and K-selected medium-sized carnivore, has major implications for evolutionary ecology and conservation

    Long-range angular correlations on the near and away side in p&#8211;Pb collisions at

    Get PDF
    corecore