47 research outputs found

    Does bilateral damage to the human amygdala produce autistic symptoms?

    Get PDF
    A leading neurological hypothesis for autism postulates amygdala dysfunction. This hypothesis has considerable support from anatomical and neuroimaging studies. Individuals with bilateral amygdala lesions show impairments in some aspects of social cognition. These impairments bear intriguing similarity to those reported in people with autism, such as impaired recognition of emotion in faces, impaired theory of mind abilities, failure to fixate eyes in faces, and difficulties in regulating personal space distance to others. Yet such neurological cases have never before been assessed directly to see if they meet criteria for autism spectrum disorders (ASD). Here we undertook such an investigation in two rare participants with developmental-onset bilateral amygdala lesions. We administered a comprehensive clinical examination, as well as the Autism Diagnostic Observation Schedule (ADOS), the Social Responsiveness Scale (SRS), together with several other standardized questionnaires. Results from the two individuals with amygdala lesions were compared with published norms from both healthy populations as well as from people with ASD. Neither participant with amygdala lesions showed any evidence of autism across the array of different measures. The findings demonstrate that amygdala lesions in isolation are not sufficient for producing autistic symptoms. We suggest instead that it may be abnormal connectivity between the amygdala and other structures that contributes to autistic symptoms at a network level

    Agenesis of the corpus callosum and autism: a comprehensive comparison

    Get PDF
    The corpus callosum, with its ∼200 million axons, remains enigmatic in its contribution to cognition and behaviour. Agenesis of the corpus callosum is a congenital condition in which the corpus callosum fails to develop; such individuals exhibit localized deficits in non-literal language comprehension, humour, theory of mind and social reasoning. These findings together with parent reports suggest that behavioural and cognitive impairments in subjects with callosal agenesis may overlap with the profile of autism spectrum disorders, particularly with respect to impairments in social interaction and communication. To provide a comprehensive test of this hypothesis, we directly compared a group of 26 adults with callosal agenesis to a group of 28 adults with a diagnosis of autism spectrum disorder but no neurological abnormality. All participants had full-scale intelligence quotient scores >78 and groups were matched on age, handedness, and gender ratio. Using the Autism Diagnostic Observation Schedule together with current clinical presentation to assess autistic symptomatology, we found that 8/26 (about a third) of agenesis subjects presented with autism. However, more formal diagnosis additionally involving recollective parent-report measures regarding childhood behaviour showed that only 3/22 met complete formal criteria for an autism spectrum disorder (parent reports were unavailable for four subjects). We found no relationship between intelligence quotient and autism symptomatology in callosal agenesis, nor evidence that the presence of any residual corpus callosum differentiated those who exhibited current autism spectrum symptoms from those who did not. Relative to the autism spectrum comparison group, parent ratings of childhood behaviour indicated children with agenesis were less likely to meet diagnostic criteria for autism, even for those who met autism spectrum criteria as adults, and even though there was no group difference in parent report of current behaviours. The findings suggest two broad conclusions. First, they support the hypothesis that congenital disruption of the corpus callosum constitutes a major risk factor for developing autism. Second, they quantify specific features that distinguish autistic behaviour associated with callosal agenesis from autism more generally. Taken together, these two findings also leverage specific questions for future investigation: what are the distal causes (genetic and environmental) determining both callosal agenesis and its autistic features, and what are the proximal mechanisms by which absence of the callosum might generate autistic symptomatology

    Atypicalities in Perceptual Adaptation in Autism Do Not Extend to Perceptual Causality

    Get PDF
    A recent study showed that adaptation to causal events (collisions) in adults caused subsequent events to be less likely perceived as causal. In this study, we examined if a similar negative adaptation effect for perceptual causality occurs in children, both typically developing and with autism. Previous studies have reported diminished adaptation for face identity, facial configuration and gaze direction in children with autism. To test whether diminished adaptive coding extends beyond high-level social stimuli (such as faces) and could be a general property of autistic perception, we developed a child-friendly paradigm for adaptation of perceptual causality. We compared the performance of 22 children with autism with 22 typically developing children, individually matched on age and ability (IQ scores). We found significant and equally robust adaptation aftereffects for perceptual causality in both groups. There were also no differences between the two groups in their attention, as revealed by reaction times and accuracy in a change-detection task. These findings suggest that adaptation to perceptual causality in autism is largely similar to typical development and, further, that diminished adaptive coding might not be a general characteristic of autism at low levels of the perceptual hierarchy, constraining existing theories of adaptation in autism.16 page(s

    Individual common variants exert weak effects on the risk for autism spectrum disorders

    Get PDF
    While it is apparent that rare variation can play an important role in the genetic architecture of autism spectrum disorders (ASD), the contribution of common variation to ASD risk is less clear. To produce a more comprehensive picture, we report Stage 2 of the Autism Genome Project genome-wide association study, adding 1301 ASD families and bringing the total to 2705 families analysed (Stages 1 and 2). In addition to evaluating association of individual SNPs, we also sought evidence that common variants, en masse, might affect risk. Despite genotyping over a million SNPs covering the genome, no single SNP shows significant association with ASD or selected phenotypes at a genome-wide level. The SNP that achieves the smallest p-value from secondary analyses is rs1718101. It falls in CNTNAP2, a gene previously implicated in susceptibility for ASD. This SNP also shows modest association with age of word/phrase acquisition in ASD subjects, of interest because features of language development are also associated with other variation in CNTNAP2. By contrast, allele-scores derived from the transmission of common alleles to Stage 1 cases significantly predict case-status in the independent Stage 2 sample. Despite being significant, the variance explained by these allele scores was small (Vm< 1%). Based on results from individual SNPs and their en masse effect on risk, as inferred from the allele-score results, it is reasonable to conclude that common variants affect ASD risk but their individual effects are modest

    Functional impact of global rare copy number variation in autism spectrum disorders

    Get PDF
    The autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in reciprocal social interaction and communication, and the presence of restricted and repetitive behaviors1. Individuals with an ASD vary greatly in cognitive development, which can range from above average to intellectual disability (ID)2. While ASDs are known to be highly heritable (~90%)3, the underlying genetic determinants are still largely unknown. Here, we analyzed the genome-wide characteristics of rare (<1% frequency) copy number variation (CNV) in ASD using dense genotyping arrays. When comparing 996 ASD individuals of European ancestry to 1,287 matched controls, cases were found to carry a higher global burden of rare, genic CNVs (1.19 fold, P= 0.012), especially so for loci previously implicated in either ASD and/or intellectual disability (1.69 fold, P= 3.4×10−4). Among the CNVs, there were numerous de novo and inherited events, sometimes in combination in a given family, implicating many novel ASD genes like SHANK2, SYNGAP1, DLGAP2 and the X-linked DDX53-PTCHD1 locus. We also discovered an enrichment of CNVs disrupting functional gene-sets involved in cellular proliferation, projection and motility, and GTPase/Ras signaling. Our results reveal many new genetic and functional targets in ASD that may lead to final connected pathways

    A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable disorder of complex and heterogeneous aetiology. It is primarily characterized by altered cognitive ability including impaired language and communication skills and fundamental deficits in social reciprocity. Despite some notable successes in neuropsychiatric genetics, overall, the high heritability of ASD (~90%) remains poorly explained by common genetic risk variants. However, recent studies suggest that rare genomic variation, in particular copy number variation, may account for a significant proportion of the genetic basis of ASD. We present a large scale analysis to identify candidate genes which may contain low-frequency recessive variation contributing to ASD while taking into account the potential contribution of population differences to the genetic heterogeneity of ASD. Our strategy, homozygous haplotype (HH) mapping, aims to detect homozygous segments of identical haplotype structure that are shared at a higher frequency amongst ASD patients compared to parental controls. The analysis was performed on 1,402 Autism Genome Project trios genotyped for 1 million single nucleotide polymorphisms (SNPs). We identified 25 known and 1,218 novel ASD candidate genes in the discovery analysis including CADM2, ABHD14A, CHRFAM7A, GRIK2, GRM3, EPHA3, FGF10, KCND2, PDZK1, IMMP2L and FOXP2. Furthermore, 10 of the previously reported ASD genes and 300 of the novel candidates identified in the discovery analysis were replicated in an independent sample of 1,182 trios. Our results demonstrate that regions of HH are significantly enriched for previously reported ASD candidate genes and the observed association is independent of gene size (odds ratio 2.10). Our findings highlight the applicability of HH mapping in complex disorders such as ASD and offer an alternative approach to the analysis of genome-wide association data.Electronic supplementary materialThe online version of this article (doi:10.1007/s00439-011-1094-6) contains supplementary material, which is available to authorized users

    A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable disorder of complex and heterogeneous aetiology. It is primarily characterized by altered cognitive ability including impaired language and communication skills and fundamental deficits in social reciprocity. Despite some notable successes in neuropsychiatric genetics, overall, the high heritability of ASD (~90%) remains poorly explained by common genetic risk variants. However, recent studies suggest that rare genomic variation, in particular copy number variation, may account for a significant proportion of the genetic basis of ASD. We present a large scale analysis to identify candidate genes which may contain low-frequency recessive variation contributing to ASD while taking into account the potential contribution of population differences to the genetic heterogeneity of ASD. Our strategy, homozygous haplotype (HH) mapping, aims to detect homozygous segments of identical haplotype structure that are shared at a higher frequency amongst ASD patients compared to parental controls. The analysis was performed on 1,402 Autism Genome Project trios genotyped for 1 million single nucleotide polymorphisms (SNPs). We identified 25 known and 1,218 novel ASD candidate genes in the discovery analysis including CADM2, ABHD14A, CHRFAM7A, GRIK2, GRM3, EPHA3, FGF10, KCND2, PDZK1, IMMP2L and FOXP2. Furthermore, 10 of the previously reported ASD genes and 300 of the novel candidates identified in the discovery analysis were replicated in an independent sample of 1,182 trios. Our results demonstrate that regions of HH are significantly enriched for previously reported ASD candidate genes and the observed association is independent of gene size (odds ratio 2.10). Our findings highlight the applicability of HH mapping in complex disorders such as ASD and offer an alternative approach to the analysis of genome-wide association data
    corecore