21 research outputs found

    Contrasting Effects of Wild Arachis Dehydrin Under Abiotic and Biotic Stresses

    Get PDF
    Plant dehydrins (DNHs) belong to the LEA (Late Embryogenesis Abundant) protein family and are involved in responses to multiple abiotic stresses. DHNs are classified into five subclasses according to the organization of three conserved motifs (K-; Y-; and S-segments). In the present study, the DHN protein family was characterized by molecular phylogeny, exon/intron organization, protein structure, and tissue-specificity expression in eight Fabaceae species. We identified 20 DHN genes, encompassing three (YnSKn, SKn, and Kn) subclasses sharing similar gene organization and protein structure. Two additional low conserved DHN Φ-segments specific to the legume SKn-type of proteins were also found. The in silico expression patterns of DHN genes in four legume species (Arachis duranensis, A. ipaënsis, Glycine max, and Medicago truncatula) revealed that their tissue-specific regulation is associated with the presence or absence of the Y-segment. Indeed, DHN genes containing a Y-segment are mainly expressed in seeds, whereas those without the Y-segment are ubiquitously expressed. Further qRT-PCR analysis revealed that, amongst stress responsive dehydrins, a SKn-type DHN gene from A. duranensis (AdDHN1) showed opposite response to biotic and abiotic stress with a positive regulation under water deficit and negative regulation upon nematode infection. Furthermore, transgenic Arabidopsis lines overexpressing (OE) AdDHN1 displayed improved tolerance to multiple abiotic stresses (freezing and drought) but increased susceptibility to the biotrophic root-knot nematode (RKN) Meloidogyne incognita. This contradictory role of AdDHN1 in responses to abiotic and biotic stresses was further investigated by qRT-PCR analysis of transgenic plants using a set of stress-responsive genes involved in the abscisic acid (ABA) and jasmonic acid (JA) signaling pathways and suggested an involvement of DHN overexpression in these stress-signaling pathways

    Physiological changes of Arabica coffee under different intensities and durations of water stress in the Brazilian cerrado

    Get PDF
    Coffee farmers have faced problems due to drought periods, with irrigation being necessary. In this sense, this study aimed to evaluate the responses to different levels and durations of water deficit in arabica coffee genotypes in the Cerrado region. The experiment consisted of three Coffea arabica genotypes and five water regimes: full irrigation (FI 100 and FI 50—full irrigation with 100% and 50% replacement of evapotranspiration, respectively), water deficit (WD 100 and WD 50—water deficit from June to September, with 100% and 50% replacement of evapotranspiration, respectively) and rainfed (without irrigation). The variables evaluated were gas exchange, relative water content (RWC) and productivity. The results showed that during stress, plants under the FI water regime showed higher gas exchange and RWC, differently from what occurred in the WD and rainfed treatments; however, after irrigation, coffee plants under WDs regained their photosynthetic potential. Rainfed and WD 50 plants had more than 50% reduction in RWC compared to FIs. The Iapar 59 cultivar was the most productive genotype and the E237 the lowest. Most importantly, under rainfed conditions, the plants showed lower physiological and productive potential, indicating the importance of irrigation in Coffea arabica in the Brazilian Cerrado

    High levels of genetic differentiation and selfing in the Brazilian cerrado fruit tree Dipteryx alata Vog. (Fabaceae)

    Get PDF
    Dipteryx alata is a native fruit tree species of the cerrado (Brazilian savanna) that has great economic potential because of its multiple uses. Knowledge of how the genetic variability of this species is organized within and among populations would be useful for genetic conservation and breeding programs. We used nine simple sequence repeat (SSR) primers developed for Dipteryx odorata to evaluate the genetic structure of three populations of D. alata located in central Brazil based on a leaf sample analysis from 101 adults. The outcrossing rate was evaluated using 300 open-pollinated offspring from 25 seed-trees. Pollen dispersal was measured by parentage analysis. We used spatial genetic structure (SGS) to test the minimal distance for harvesting seeds in conservation and breeding programs. Our data indicate that the populations studied had a high degree of genetic diversity and population structure, as suggested by the high level of divergence among populations . The estimated outcrossing rate suggested a mixed mating system, and the intrapopulation fixation index was influenced by SGS. We conclude that seed harvesting for genetic conservation and breeding programs requires a minimum distance between trees of 196 m to avoid collecting seeds from related seed-trees

    Isolamento de microssatélites de espécies madeireiras no contexto da sustentabilidade genética no manejo florestal

    No full text
    Aborda isolamento de microssatélites de espécies madeireiras no contexto da sustentabilidade genética no manejo florestal com o objetivo de isolar e caracterizar uma bateria de marcadores microssatélites para espécies arbóreas da Floresta Amazônica: Jacaranda copaia, Bagassa guianensis e Dipteryx odorata. Estes estudos vem sendo realizados como parte do projeto Dendrogene, e as análises genéticas populacionais posteriores fornecerão subsídios para conservação e manejo sustentável destas espécies

    Novel microsatellite markers for Bactris gasipaes (Palmae)

    No full text
    Ten new polymorphic microsatellites were isolated and characterized in Bactris gasipaes using a microsatellite enrichment protocol and selective hybridization with oligonucleotide probes. The loci are highly polymorphic, with a mean of 14.6 alleles per locus and a mean expected heterozygosity of 0.83 among 62 individuals of the Pampa Hermosa landrace. These microsatellites will be useful for population genetic analysis and germplasm characterization for heart-of-palm breeding

    Contrasting effects of wild arachis dehydrin under abiotic and biotic stresses

    No full text
    Plant dehydrins (DNHs) belong to the LEA (Late Embryogenesis Abundant) protein family and are involved in responses to multiple abiotic stresses. DHNs are classified into five subclasses according to the organization of three conserved motifs (K-; Y-; and S-segments). In the present study, the DHN protein family was characterized by molecular phylogeny, exon/intron organization, protein structure, and tissue-specificity expression in eight Fabaceae species. We identified 20 DHN genes, encompassing three (YnSKn, SKn, and K-n) subclasses sharing similar gene organization and protein structure. Two additional low conserved DHN Phi-segments specific to the legume SKn-type of proteins were also found. The in silico expression patterns of DHN genes in four legume species (Arachis duranensis, A. ipaensis, Glycine max, and Medicago truncatula) revealed that their tissue-specific regulation is associated with the presence or absence of the Y-segment. Indeed, DHN genes containing a Y-segment are mainly expressed in seeds, whereas those without the Y-segment are ubiquitously expressed. Further qRT-PCR analysis revealed that, amongst stress responsive dehydrins, a SKn-type DHN gene from A. duranensis (AdDHN1) showed opposite response to biotic and abiotic stress with a positive regulation under water deficit and negative regulation upon nematode infection. Furthermore, transgenic Arabidopsis lines overexpressing (OE) AdDHN1 displayed improved tolerance to multiple abiotic stresses (freezing and drought) but increased susceptibility to the biotrophic root-knot nematode (RKN) Meloidogyne incognita. This contradictory role of AdDHN1 in responses to abiotic and biotic stresses was further investigated by qRT-PCR analysis of transgenic plants using a set of stress-responsive genes involved in the abscisic acid (ABA) and jasmonic acid (JA) signaling pathways and suggested an involvement of DHN overexpression in these stress-signaling pathways

    Physiological Changes of Arabica Coffee under Different Intensities and Durations of Water Stress in the Brazilian Cerrado

    No full text
    Coffee farmers have faced problems due to drought periods, with irrigation being necessary. In this sense, this study aimed to evaluate the responses to different levels and durations of water deficit in arabica coffee genotypes in the Cerrado region. The experiment consisted of three Coffea arabica genotypes and five water regimes: full irrigation (FI 100 and FI 50—full irrigation with 100% and 50% replacement of evapotranspiration, respectively), water deficit (WD 100 and WD 50—water deficit from June to September, with 100% and 50% replacement of evapotranspiration, respectively) and rainfed (without irrigation). The variables evaluated were gas exchange, relative water content (RWC) and productivity. The results showed that during stress, plants under the FI water regime showed higher gas exchange and RWC, differently from what occurred in the WD and rainfed treatments; however, after irrigation, coffee plants under WDs regained their photosynthetic potential. Rainfed and WD 50 plants had more than 50% reduction in RWC compared to FIs. The Iapar 59 cultivar was the most productive genotype and the E237 the lowest. Most importantly, under rainfed conditions, the plants showed lower physiological and productive potential, indicating the importance of irrigation in Coffea arabica in the Brazilian Cerrado
    corecore