66 research outputs found

    FieldML: concepts and implementation

    Get PDF
    The field modelling language FieldML is being developed as a standard for modelling and interchanging field descriptions in software, suitable for a wide range of computation techniques. It comprises a rich set of operators for defining generalized fields as functions of other fields, starting with basic domain fields including sets of discrete objects and coordinate systems. It is extensible by adding new operators and by their arbitrary combination in expressions, making it well suited for describing the inherent complexity of biological materials and organ systems. This paper describes the concepts behind FieldML, including a simple example of a spatially varying finite-element field. It outlines current implementations in established, open source computation and visualization software, both drawing on decades of bioengineering modelling software development experience

    The serum proteome of Atlantic salmon, Salmo salar, during pancreas disease (PD) following infection with salmonid alphavirus subtype 3 (SAV3)

    Get PDF
    Salmonid alphavirus is the aetological agent of pancreas disease (PD) in marine Atlantic salmon, Salmo salar, and rainbow trout, Oncorhynchus mykiss, with most outbreaks in Norway caused by SAV subtype 3 (SAV3). This atypical alphavirus is transmitted horizontally causing a significant economic impact on the aquaculture industry. This histopathological and proteomic study, using an established cohabitational experimental model, investigated the correlation between tissue damage during PD and a number of serum proteins associated with these pathologies in Atlantic salmon. The proteins were identified by two-dimensional electrophoresis, trypsin digest and peptide MS/MS fingerprinting. A number of humoral components of immunity which may act as biomarkers of the disease were also identified. For example, creatine kinase, enolase and malate dehydrogenase serum concentrations were shown to correlate with pathology during PD. In contrast, hemopexin, transferrin, and apolipoprotein, amongst others, altered during later stages of the disease and did not correlate with tissue pathologies. This approach has given new insight into not only PD but also fish disease as a whole, by characterisation of the protein response to infection, through pathological processes to tissue recovery. Biological significance: Salmonid alphavirus causes pancreas disease (PD) in Atlantic salmon, Salmo salar, and has a major economic impact on the aquaculture industry. A proteomic investigation of the change to the serum proteome during PD has been made with an established experimental model of the disease. Serum proteins were identified by two-dimensional electrophoresis, trypsin digest and peptide MS/MS fingerprinting with 72 protein spots being shown to alter significantly over the 12 week period of the infection. The concentrations of certain proteins in serum such as creatine kinase, enolase and malate dehydrogenase were shown to correlate with tissue pathology while other proteins such as hemopexin, transferrin, and apolipoprotein, altered in concentration during later stages of the disease and did not correlate with tissue pathologies. The protein response to infection may be used to monitor disease progression and enhance understanding of the pathology of PD

    Distinctive expansion of potential virulence genes in the genome of the oomycete fish pathogen Saprolegnia parasitica.

    Get PDF
    Oomycetes in the class Saprolegniomycetidae of the Eukaryotic kingdom Stramenopila have evolved as severe pathogens of amphibians, crustaceans, fish and insects, resulting in major losses in aquaculture and damage to aquatic ecosystems. We have sequenced the 63 Mb genome of the fresh water fish pathogen, Saprolegnia parasitica. Approximately 1/3 of the assembled genome exhibits loss of heterozygosity, indicating an efficient mechanism for revealing new variation. Comparison of S. parasitica with plant pathogenic oomycetes suggests that during evolution the host cellular environment has driven distinct patterns of gene expansion and loss in the genomes of plant and animal pathogens. S. parasitica possesses one of the largest repertoires of proteases (270) among eukaryotes that are deployed in waves at different points during infection as determined from RNA-Seq data. In contrast, despite being capable of living saprotrophically, parasitism has led to loss of inorganic nitrogen and sulfur assimilation pathways, strikingly similar to losses in obligate plant pathogenic oomycetes and fungi. The large gene families that are hallmarks of plant pathogenic oomycetes such as Phytophthora appear to be lacking in S. parasitica, including those encoding RXLR effectors, Crinkler's, and Necrosis Inducing-Like Proteins (NLP). S. parasitica also has a very large kinome of 543 kinases, 10% of which is induced upon infection. Moreover, S. parasitica encodes several genes typical of animals or animal-pathogens and lacking from other oomycetes, including disintegrins and galactose-binding lectins, whose expression and evolutionary origins implicate horizontal gene transfer in the evolution of animal pathogenesis in S. parasitica

    Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Background: In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936). Findings: Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p<0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p<0·0001). Interpretation: In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    The usefulness of a single measurement of insulin-like growth factor-1 as a predictor of embryo yield and pregnancy rates in a bovine MOET program

    No full text
    The objective was to determine if a single measurement of plasma insulin-like growth factor-1 (IGF-1) could predict the number of viable embryos obtained from donors and the likelihood of pregnancy in recipients in multiple ovulation and embryo transfer (MOET) programs in cattle. The embryo yields from 101 embryo recoveries were examined in maiden Holstein heifers (n=75) and multiparous Holstein cows (lactating cows n=20, dry cows n=6). Donors were super stimulated with FSH and embryo recovery was done non-surgically 7 days after artificial insemination. Embryos were classified according to the IETS criteria. Pregnancy rates in 100 maiden Holstein heifer recipients were analysed. Recipients were on day 7+/-1 of the estrous cycle at transfer. Pregnancy diagnosis was carried out at day 30 (PD 30) and rechecked at day 60 (PD 60) after transfer. Blood samples from coccygeal vessels taken at the time of embryo recovery (donors) and transfer (recipients) were analysed for IGF-1, insulin, beta-hydroxybutyrate (beta-OHB), non-esterified fatty acids (NEFA), urea and cholesterol. There was a negative correlation between the number of viable embryos and insulin (r=-0.33, P=0.025) in donor heifers. In donor cows, the number of viable embryos was correlated with IGF-1 (r=0.43, P=0.028) and cholesterol (r=-0.43, P=0.027). In recipients, PD30 and PD 60 were not affected by any of the circulating parameters analysed. Insulin, IGF-1 and cholesterol only explained 8.9, 13.9 and 15.8% of the variation in the production of viable embryos, respectively. Several factors affect MOET programs and under the circumstances of the present study the usefulness of hormonal and metabolic profiles as predictors of the outcome of this biotechnology was limited
    corecore