588 research outputs found

    Nation and Language: The Balkan Solutions

    Get PDF
    No Abstract

    Nation and Language: The Balkan Solutions

    Get PDF
    No Abstract

    Ion Exchange of Zeolite Na-Pc with Pb2+, Zn2+, and Ni2+ Ions

    Get PDF

    Different ways of framing event attribution questions: The example of warm and wet winters in the United Kingdom similar to 2015/16

    Get PDF
    This is the final version. Available from the American Meteorological Society via the DOI in this recordAttribution analyses of extreme events estimate changes in the likelihood of their occurrence due to human climatic influences by comparing simulations with and without anthropogenic forcings. Classes of events are commonly considered that only share one or more key characteristics with the observed event. Here we test the sensitivity of attribution assessments to such event definition differences, using the warm and wet winter of 2015/16 in the United Kingdom as a case study. A large number of simulations from coupled models and an atmospheric model are employed. In the most basic case, warm and wet events are defined relative to climatological temperature and rainfall thresholds. Several other classes of events are investigated that, in addition to threshold exceedance, also account for the effect of observed sea surface temperature (SST) anomalies, the circulation flow, or modes of variability present during the reference event. Human influence is estimated to increase the likelihood of warm winters in the United Kingdom by a factor of 3 or more for events occurring under any atmospheric and oceanic conditions, but also for events with a similar circulation or oceanic state to 2015/16. The likelihood of wet winters is found to increase by at least a factor of 1.5 in the general case, but results from the atmospheric model, conditioned on observed SST anomalies, are more uncertain, indicating that decreases in the likelihood are also possible. The robustness of attribution assessments based on atmospheric models is highly dependent on the representation of SSTs without the effect of human influence.Joint BEIS/Defra Met Office Hadley Centre Climate Programm

    Designing Secure Ethereum Smart Contracts: A Finite State Machine Based Approach

    Full text link
    The adoption of blockchain-based distributed computation platforms is growing fast. Some of these platforms, such as Ethereum, provide support for implementing smart contracts, which are envisioned to have novel applications in a broad range of areas, including finance and Internet-of-Things. However, a significant number of smart contracts deployed in practice suffer from security vulnerabilities, which enable malicious users to steal assets from a contract or to cause damage. Vulnerabilities present a serious issue since contracts may handle financial assets of considerable value, and contract bugs are non-fixable by design. To help developers create more secure smart contracts, we introduce FSolidM, a framework rooted in rigorous semantics for designing con- tracts as Finite State Machines (FSM). We present a tool for creating FSM on an easy-to-use graphical interface and for automatically generating Ethereum contracts. Further, we introduce a set of design patterns, which we implement as plugins that developers can easily add to their contracts to enhance security and functionality

    Habitat shifts in the evolutionary history of a Neotropical flycatcher lineage from forest and open landscapes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about the role ecological shifts play in the evolution of Neotropical radiations that have colonized a variety of environments. We here examine habitat shifts in the evolutionary history of <it>Elaenia </it>flycatchers, a Neotropical bird lineage that lives in a range of forest and open habitats. We evaluate phylogenetic relationships within the genus based on mitochondrial and nuclear DNA sequence data, and then employ parsimony-based and Bayesian methods to reconstruct preferences for a number of habitat types and migratory behaviour throughout the evolutionary history of the genus. Using a molecular clock approach, we date the most important habitat shifts.</p> <p>Results</p> <p>Our analyses resolve phylogenetic relationships among <it>Elaenia </it>species and confirm several species associations predicted by morphology while furnishing support for other taxon placements that are in conflict with traditional classification, such as the elevation of various <it>Elaenia </it>taxa to species level. While savannah specialism is restricted to one basal clade within the genus, montane forest was invaded from open habitat only on a limited number of occasions. Riparian growth may have been favoured early on in the evolution of the main <it>Elaenia </it>clade and subsequently been deserted on several occasions. Austral long-distance migratory behaviour evolved on several occasions.</p> <p>Conclusion</p> <p>Ancestral reconstructions of habitat preferences reveal pronounced differences not only in the timing of the emergence of certain habitat preferences, but also in the frequency of habitat shifts. The early origin of savannah specialism in <it>Elaenia </it>highlights the importance of this habitat in Neotropical Pliocene and late Miocene biogeography. While forest in old mountain ranges such as the Tepuis and the Brazilian Shield was colonized early on, the most important colonization event of montane forest was in conjunction with Pliocene Andean uplift. Riparian habitats may have played an important role in facilitating habitat shifts by birds expanding up the mountains along streams and adapting to newly emerging montane forest habitat.</p

    The effect of human land use change in the Hadley Centre attribution system

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordAtmospheric Science Letters published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society. We have investigated the effects of land use on past climate change by means of a new 15-member ensemble of the HadGEM3-A-N216 model, usually used for event attribution studies. This ensemble runs from 1960 to 2013, and includes natural external climate forcings with the addition of human land use changes. It supports previously-existing ensembles, either with only natural forcings, or with all forcings (both anthropogenic and natural, including land use changes), in determining the contribution to the change in risk of extreme events made by land use change. We found a significant difference in near-surface air temperature trends over land, attributable to the effects of human land use. The main part of the signal derives from a relative cooling in Arctic regions which closely matches that of deforestation. This cooling appears to spread by polar amplification. A similar pattern of change is seen in latent heat flux trend, but significant rainfall change is almost entirely absent.Department for Business, Energy and Industrial Strategy, Met Office Hadley Centre Climate ProgrammeDepartment for Environment, Food and Rural AffairsEuropean CommissionUK‐China Research & Innovation Partnership Fund, Newton Fun
    corecore