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ABSTRACT

Attribution analyses of extreme events estimate changes in the likelihood of their occurrence due to human

climatic influences by comparing simulations with and without anthropogenic forcings. Classes of events are

commonly considered that only share one or more key characteristics with the observed event. Here we test

the sensitivity of attribution assessments to such event definition differences, using thewarm andwet winter of

2015/16 in the United Kingdom as a case study. A large number of simulations from coupled models and an

atmospheric model are employed. In the most basic case, warm and wet events are defined relative to cli-

matological temperature and rainfall thresholds. Several other classes of events are investigated that, in

addition to threshold exceedance, also account for the effect of observed sea surface temperature (SST)

anomalies, the circulation flow, ormodes of variability present during the reference event. Human influence is

estimated to increase the likelihood of warmwinters in theUnitedKingdomby a factor of 3 ormore for events

occurring under any atmospheric and oceanic conditions, but also for events with a similar circulation or

oceanic state to 2015/16. The likelihood of wet winters is found to increase by at least a factor of 1.5 in the

general case, but results from the atmospheric model, conditioned on observed SST anomalies, are more

uncertain, indicating that decreases in the likelihood are also possible. The robustness of attribution assess-

ments based on atmospheric models is highly dependent on the representation of SSTs without the effect of

human influence.

1. Introduction

Attribution of weather and climate extremes assesses

in a quantitative manner the extent to which causal

factors (most commonly anthropogenic climate change)

may have altered certain characteristics such as their

likelihood or magnitude (Stott et al. 2016). Rapid sci-

entific advances in this area helped dispel initial skep-

ticism over the feasibility of such an undertaking and the

potential of event attribution was recently acknowl-

edged by the United States (National Academies of

Sciences, Engineering, and Medicine 2016). Driven by a

high demand for attribution information from scientists,

decision makers and the public, the Bulletin of the

American Meteorological Society (BAMS) has been

publishing an annual special report on the State of the

Climate that reviews extreme events of the previous

year in the context of climate variability and change

(Peterson et al. 2012, 2013; Herring et al. 2014, 2015,

2016a). Having reached its sixth issue, the report has

demonstrated the proliferation of attribution methods

and illustrated their application to over 100 events. Be-

sides the relatively easier cases of temperature extremes

forwhich the effect of human influence ismost likely to be

detected, the anthropogenic signal has also been shown to

alter the characteristics of rainfall extremes and storms

(e.g., Schaller et al. 2016), droughts (Lott et al. 2013),

tropical cyclones (Zhang et al. 2016), hurricane-related

inundations (Sweet et al. 2013), and so on. Of course

unforced climatic variability is still a crucial factor that

may dominate over any anthropogenic effect and hinder

its detection, as was the case in about 35% of the studies

published in the BAMS reports. International research

initiatives like the Climate of the 20th Century Plus at-

tribution project (C20C1; http://portal.nersc.gov/c20c/)

have promoted research via collaborative work, while the

recent European project European Climate andWeather

Events: Interpretation andAttribution (EUCLEIA) took

a step further, integrating event attribution into a quasi-

operational framework. Fully operational systems issu-

ing attribution assessments on a regular basis have the
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potential to become the go-to place for robust scientific

information in the aftermath of high-impact events and to

play a key role in developing climate services.

Risk-based attribution analyses derive changes in

characteristics (e.g., likelihood) of extreme events by

comparing their distribution in the real world against

their distribution in a hypothetical natural world without

human influence on the climate. This simple concept was

introduced by Stott et al. (2004) in his study of the 2003

summer heatwave in Europe. Different methodologies

employ essentially the same concept, but use different

tools to construct the aforementioned distributions. For

example, numerous studies employ large ensembles of

simulations generated with atmospheric models (Pall

et al. 2011; Christidis et al. 2013; Black et al. 2016), while

others employ coupled model simulations (Christidis

and Stott 2016; Lewis and Karoly 2015) or long obser-

vational records (Vautard et al. 2015; van Oldenborgh

et al. 2015). Multimethod analyses have also been un-

dertaken (King et al. 2015; Otto et al. 2015a; van der

Wiel et al. 2017). Methodological variants introduce

subtle differences in the framing of the attribution

question. For example, analyses with atmospheric

models may estimate the changing likelihood of an

event given the observed state of the ocean at the time it

occurred (prescribed through the boundary conditions),

while studies with coupled models sample the entire

range of oceanic variability. It becomes evident from

this example that despite the widespread use of the term

‘‘event attribution,’’ attribution studies do not represent

an actual event with all the unique conditions in which it

occurred. Instead, ‘‘classes of events’’ are employed that

only share some characteristics with the event under

consideration.

The simplest class of events in attribution studies de-

fines extremes in relation to a pre-specified threshold of

the relevant climatic variable. This was the case in Stott

et al. (2004), where severe summer heatwaves in Europe

were defined as exceedances of the second highest

summer temperature in the instrumental record. While

thresholds are invariably employed in risk-based ana-

lyses, additional constraints may be introduced to create

classes of events that share more characteristics with the

event under consideration. As already mentioned,

studies with atmospheric models can condition the es-

timated change in the risk of extremes to the observed

SSTs and so alter the event’s definition from simply

crossing a threshold to crossing a threshold under the

observed state of the ocean. This conditioning may be

critical in regions where the occurrence of extremes is

strongly influenced by the SSTs (Seager and Hoerling

2014; Christidis and Stott 2014). When other known

drivers of extremes come into play, a similar conditioning

may be introduced. Examples include attribution studies

that account for the phase of El Niño–Southern Oscilla-

tion (ENSO; King et al. 2016; Karoly et al. 2016), the

dominant atmospheric circulation pattern (Christidis and

Stott 2015; Yiou and Cattiaux 2014), etc. Such studies

often investigate not only the anthropogenic influence on

extremes, but also the contribution from the additional

driving factor. It is then possible that analyses of the same

event may yield different results, only because the attri-

bution is conditioned on different factors. In this paper

we start from a basic class of events, namely warm and

wet U.K. winters with the temperature and rainfall ex-

ceeding pre-specified values that describe climatological

extremes, as was the case in December 2015–February

2016 (DJF 2015/16), and then alter the attribution ques-

tion by conditioning our assessment on a host of possible

driving factors.

It should be noted that the framing of the attribution

question may also differ in other ways not considered

here. The likelihood of extremes may for instance be

sensitive to the specification of the threshold used to

define extreme events or the region considered in the

analysis, as discussed in Otto et al. (2015b) and Angélil
et al. (2018). Analyses of the same event may also em-

ploy different variables to describe it. In a later com-

mentary Otto (2016) also pointed out that the overall

change in the risk of extremes begs consideration of both

thermodynamic and dynamic changes. The latter arise

from anthropogenic influence on the atmospheric cir-

culation and, although they are generally less easily

detected, their contribution has been considered in the

literature (e.g., Schaller et al. 2016; Vautard et al. 2016).

Here we only employ a single threshold to define ex-

treme events and do not attempt a separation of the

thermodynamic and dynamic effects, but focus on the

overall change in the likelihood of warm and wet winters

in the United Kingdom conditioned on different factors.

More specifically, we set out to estimate the likelihood

of extreme events in the general case (i.e., due to an-

thropogenic forcings only), as well as the effect that the

following additional factors have on the likelihood (all

these factors describe different characteristics of winter

of 2015/16):

d SST anomaly patterns observed in DJF 2015/16,
d strong El Niño conditions,
d southwesterly atmospheric flow, and
d strong westerly phase of the quasi-biennial oscilla-

tion (QBO).

Some of these factors were also examined in the study of

the 2015/16 event by Scaife et al. (2017) and were found

to increase predictability, at least when acting in synergy

as part of wider teleconnections. Considering the same
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event in this paper offers a complementary attribution

perspective to the seasonal forecasting’s frame of ref-

erence. Although we do not expect all factors examined

here to have equally contributed to the event, considering a

range of possible drivers, from primary to secondary,

helps to investigate better the sensitivity to framing.

Finally, unlike forecast simulations, the model simu-

lations in attribution studies are generally not initial-

ized. The effect of using uninitialized model runs will

also be examined.

The remainder of the paper is structured as follows:

Section 2 briefly describes the event under consideration

and presents the data and the different methodological

approaches used in this study. Section 3 lists various

evaluation tests applied to the models to assess their

suitability for event attribution. Results are presented in

section 4. Some discussion on the main findings and

concluding remarks are given in section 5.

2. Attribution of the U.K. winter of 2015/16:
Methods and data

a. The event

Time series of the winter mean temperature and

rainfall averaged over the United Kingdom (488–608N,

108E–38W) are constructed using the HadCRUT4

(Morice et al. 2012) and GPCC (Schneider et al. 2014)

datasets (Fig. 1) and show that DJF 2015/16 was the

fourth warmest and third wettest winter since 1900. The

event developed under the synergy of known predictive

factors (Scaife et al. 2017), namely the presence of a very

strong El Niño, a strong westerly phase of the QBO

(Baldwin et al. 2001), and a vigorous stratospheric polar

night jet early in the season. The interplay between these

factors favors extratropical cyclogenesis, which led to

the 2015/16 warm and wet conditions in the United

Kingdom, skillfully predicted (Scaife et al. 2017) by

the Met Office’s Global Seasonal Forecast System

version 5 (GloSea5; MacLachlan et al. 2015).

Figure 2a shows the evolution of the QBO index in

recent decades using zonal wind data at 30 hPa over

the equator from NOAA/CPC (http://www.cpc.ncep.

noaa.gov/data/indices/). The index was near its posi-

tive peak during the winter of 2015/16 (highlighted in

red on the time series), indicating strong westerly

winds, but, interestingly, the QBO failed to swing into

its easterly phase later in the year (Newman et al.

2016). Strong El Niño conditions during the winter

season are evident in the time series of the oceanic

Niño index (ONI) for DJF (Fig. 2c), also constructed

with NOAA/CPC data. ONI is computed as 3-month

SST anomalies in the Niño-3.4 region relative to 30-yr

base periods updated regularly to minimize the effect

of long-termwarming. In this studywe use an SST-based

index for ENSO, rather than a pressure-based one, as

the latter would involve a retrieval of a large amount of

pressure data from a large number of models. Instead,

we construct modeled ONI data from near-surface air

temperatures (also used in the attribution analysis)

rather than SSTs. Using simulations from a single model

(HadGEM2-ES) we confirmed that ONI values re-

trieved with near-surface air temperatures and oceanic

temperatures are almost identical (correlation co-

efficient greater than 0.99). While the unique charac-

teristics of the event, given the state of the atmosphere

and the ocean at the time it occurred, are crucial in

seasonal forecasting, event attribution, as already men-

tioned, is concerned with broader classes of events. The

likelihood of such events is derived from distributions

constructed with model simulations. In this study we use

experiments with different external forcings carried out

with both atmospheric and atmosphere–ocean coupled

models.

b. Coupled models

Coupled models sample in principle the entire range

of internal variability and therefore yield broad distri-

butions of climatic variables (e.g., temperature for the

study of heatwaves), which in turn provide estimates of

the likelihood of extremes in the ‘‘general case’’ (i.e.,

under any possible conditions). This approach has been

employed in event attribution to estimate the change in

the risk of extremes due to human influence, using either

the raw modeled response to climatic forcings (Lewis

et al. 2014) or a refined scaled response that matches

better the observations (Christidis et al. 2015). Here we

use multimodel ensembles from 38 models that con-

tributed data to phase 5 of the Coupled Model In-

tercomparison Project (CMIP5; Taylor et al. 2012).

Simulations with all historical forcings are used to repre-

sent the actual climate (ALL). These include both anthro-

pogenic influences (emissions of well-mixed greenhouse

gases, aerosols, and ozone, as well as land-use changes) and

natural forcings (changes in volcanic aerosols and the solar

irradiance). Temperature and rainfall distributions repre-

sentative of the U.K. climate in winter 2015/16 are con-

structed by extracting model data over a 10-yr period (2010/

11–2019/20) centered on the reference year. As we have 86

ALL simulations in total (Table 1), we get samples of 860

winters with which we make probability density functions

(PDFs) for 2015/16. These provide estimates of the likeli-

hood of extremes in the actual world in the general case.

Similarly, distributions for the natural climate (NAT) are

made using model experiments without the effect of an-

thropogenic forcings. Here, we use 35 ‘‘control’’ simulations
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representing the preindustrial climate (Table 1). The dis-

advantage of using control simulations is that they do

not include the effect of natural forcings, which, however,

is generally weaker and short-lived and is not expected to

have strong influence on the distributions. Although

CMIP5 simulations with natural forcings are available,

the majority of them end in year 2012 and are therefore

not useful for this work. The advantage of the control

experiment is that its simulations are long (typically

multicentennial) and can thus provide large samples of

data. Sixty-year-long segments are extracted from the

simulations, representative of the NAT climate in 1961–

2020, from which we again use the last 10 years to rep-

resent the climate in winter 2015/16. The reason we

extract long segments is that we use the first 30 years

(representing the period 1961–90 in the preindustrial

FIG. 1. Time series of winter mean (a) temperature and (b) rainfall anomalies relative to

1961–90 averaged over the U.K. region (488–608N, 108E–38W). The time series were con-

structed with the HadCRUT4 and GPCC datasets. The red lines mark the observed values in

winter 2015/16 and the dotted lines the 1-in-10-year events during 1961–90. A weak positive

correlation between winter temperature and rainfall is found (correlation coefficient 0.12).
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climate) as a base period to express temperature and

rainfall as anomalies. The use of anomalies enables

comparison with observational data and helps remove

model biases, which is important when creating a

multimodel ensemble. The control simulations provide

large samples of 3060 winters in total representative of

DJF 2015/16 (Table 1) in the NAT world. It should be

noted that all simulations in this study are given an

equal weight despite the fact that the selected models

provide different number of simulations for each ex-

periment. Rather than investigating the role of model

dependence (Hauser et al. 2017), here we solely focus

on the framing effect. The combined data we use are

evaluated in section 3 and found to be suitable for our

attribution analysis.

c. Atmospheric model

We use simulations from the Hadley Centre’s event

attribution system (Christidis et al. 2013) built on the

atmospheric model HadGEM3-A (Hewitt et al. 2011).

The model was upgraded during the EUCLEIA project

and now features a high horizontal resolution of about

60 km and 85 vertical levels (Ciavarella et al. 2018). The

attribution system currently runs on a seasonal cycle and

every quarter produces large ALL and NAT ensembles

for the study of events in the preceding season. Unlike

the CMIP5 models used in this paper, the NAT simu-

lations with the atmospheric model include the effect of

natural forcings. The Hadley system provided simula-

tions for numerous studies of different types of ex-

tremes, several of which published in the annual special

reports of BAMS. In this study we use the ALL and

NAT ensembles for winter 2015/16, each comprising 105

simulations. In addition, we also employ, as explained

later, smaller 15-member ALL and NAT ensembles of

multidecadal simulations that cover the period 1960–

2013. The longer runs for the actual climate are also used

for model evaluation.

Atmospheric simulations require boundary condi-

tions of prescribed SSTs and sea ice cover. The ALL

experiment employs observations from the HadISST

dataset (Rayner et al. 2003). The representation of

FIG. 2. (a) Time series of the monthly QBO index produced with NOAA/CPC data. The winter of 2015/16 is

marked in red. (b) Power spectra for the QBO index during 1960–2013 based on NOAA/CPC data (blue line) and

the 15 HadGEM3-A simulations with ALL forcings (gray lines). (c) Time series of the DJF mean ONI from

NOAA/CPC data. Red, blue, and gray bars indicate El Niño, La Niña, and neutral ENSO conditions. Horizontal

dashed lines mark the 60.5-K ONI values, commonly used to differentiate between different ENSO phases.

Testing whether the slope of least squares fits is significantly different than zero indicates no significant trends in the

observed QBO and ONI time series (p values greater than 0.1).
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cooler oceans in the NAT climate requires an estimate

of the anthropogenic change in the SSTs (delta SST) to

be subtracted from the observations. Deriving this esti-

mate constitutes the largest uncertainty in studies with

atmospheric models. Typically, delta SST estimates

have been obtained from experiments with coupled

models (Pall et al. 2011; Christidis et al. 2013), as was

also done in this study. More specifically, we use the

averagemodeled anthropogenic change in SST across 51

simulations with 19 CMIP5 models, a common bench-

mark for several attribution systems participating in the

C20C1 project (http://portal.nersc.gov/c20c/experiment.

html). Simple empirical relationships are also used to

adjust the sea ice in the NAT simulations accordingly as

in previous work (Christidis et al. 2013). The DJF mean

SSTs in the model runs for winter 2015/16 are shown in

Figs. 3a and 3b for the ALL and NAT experiment re-

spectively. The delta SST pattern is illustrated in

Fig. 3c. Pattern uncertainty is sometimes represented

by producing several versions of the NAT experiment,

with delta SST patterns from different individual

models (e.g., Pall et al. 2011; Schaller et al. 2014). This,

however, is a computationally expensive approach. The

use of a single pattern from a multimodel ensemble, as

in this study, is deemed a good compromise, as it could

minimize individual model errors. Alternatively, ob-

servationally derived delta SST patterns have also been

proposed (Christidis and Stott 2014; Takayabu et al.

2015; Shiogama et al. 2014), whereby linear trends in

SST are removed at each grid point of HadISST. A

possible caveat in the latter approach is that the trends

may to some extent be influenced by long-term vari-

ability. Nevertheless, the HadISST record may be

considered sufficiently long (over 140 years) to mini-

mize the impact of variability on the delta SST pattern.

The observationally derived pattern for DJF 2015/16

(not used in this analysis) is shown in Fig. 3d. The

modeled and observational patterns both show an

overall warming, which however is much stronger ac-

cording to the models (global mean warming of 0.87K

estimated with CMIP5 models and 0.57K estimated

with HadISST). The patterns also display different

characteristics that may be important in regions

strongly influenced by the ocean (Christidis and Stott

2014), as will also be discussed later. The SSTs pre-

scribed in the NAT simulations retain the El Niño
signal (Fig. 2b) as well as the broad general charac-

teristics of the observed patterns (e.g., the cooling re-

gion south of Greenland). The northernmost parts of

the Atlantic, however, display a warming in the ALL

experiment, but a strong cooling in the NAT experi-

ment, possibly linked to the Arctic amplification effect

(Pithan and Mauritsen 2014; Serreze and Barry 2011).

Unlike the ENSO phase that is prescribed through the

boundary conditions, the NAT simulations do not re-

tain the observed phase of the QBO, as they grow out

of phase with the observations a few years after their

TABLE 1. CMIP5 models used in the analysis. The number of

ALL simulations provided by each model is shown together with

the number of 60-yr-long segments extracted from the CONTROL

experiment. The total number of winters extracted from the sim-

ulations and used to construct distributions for winter 2015/16

with and without human influence is reported on the last row. The

ALL simulations were extended following the representative

concentration pathway 4.5 (RCP4.5). As differences in climate

trends between RCPs become evident later in the century, results

presented here are not sensitive to the RCP choice. (Expansions

of acronyms are available online at http://www.ametsoc.org/

PubsAcronymList.)

Model

ALL CONTROL

Ensemble

size

No. of segments

extracted

ACCESS1.0 1 8

ACCESS1.3 1 8

BNU-ESM 1 9

CCSM4 6 17

CESM1-BGC 1 8

CESM1-CAM5 3 5

CESM1-WACCM 1 3

CMCC-CM 1 5

CMCC-CMS 1 8

CNRM-CM5 1 14

CSIRO-Mk3.6.0 10 8

CanESM2 5 16

EC-EARTH 6 7

FIO-ESM 3 13

GFDL-CM3 1 —

GFDL-ESM2G 1 —

GFDL-ESM2M 1 —

GISS-E2-H 5 8

GISS-E2-H-CC 1 4

GISS-E2-R 6 14

GISS-E2-R-CC 1 4

HadGEM2-AO 1 11

HadGEM2-CC 1 4

HadGEM2-ES 4 9

IPSL-CM5A-LR 4 16

IPSL-CM5A-MR 1 4

IPSL-CM5B-LR 1 4

MIROC-ESM 1 10

MIROC-ESM-CHEM 1 4

MIROC5 3 11

MPI-ESM-LR 3 16

MPI-ESM-MR 3 16

MRI-CGCM3 1 8

NorESM1-M 1 8

NorESM1-ME 1 4

BCC-CSM1.1 1 8

BCC-CSM1.1-M 1 6

INM-CM4.0 1 8

Total number of years 860 3060
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start. However, power spectra of the QBO index pro-

duced with the 15 multidecadal simulations of the ALL

experiment (Fig. 2b) show that the model captures well

the periodicity of the QBO.

d. Framing

Samples of simulated data from the ALL and NAT

experiments render distributions of winter temperature

and precipitation over the United Kingdom with and

without the anthropogenic effect. Warm and wet events

are defined relative to a temperature anomaly of 0.77K

and a total winter precipitation anomaly of 79.75mm,

corresponding to 1-in-10-year events during the 1961–90

climatological period. Using such moderate thresholds

instead of the actual 2015/16 observations (red lines in

Fig. 1) to define extremes provides a more general event

description and avoids the difficulty of calculating very

small probabilities associated with very large un-

certainties. The selected thresholds define broad classes

of events that only share one basic characteristic with

the winter 2015/16 (i.e., the exceedance of the specified

threshold anomalies). The choice of the 1961–90 base-

line is common in attribution studies, as observational

datasets like HadCRUT4 provide anomalies relative

to this period. As in previous work, we employ the

generalized Pareto distribution (GPD) to estimate

probabilities of extremes when the threshold lies in the

tail of the distribution and a Monte Carlo bootstrap

procedure to compute uncertainties (Christidis et al.

2013). Taking a step further, we subsequently define

other classes of events that share some more charac-

teristics with the reference event. This is done by sub-

sampling the modeled data (i.e., extracting only winters

that feature the characteristic under consideration). As

an example, Fig. 4 illustrates how the effect of the

characteristic winter circulation in DJF 2015/16 can be

investigated. The 500-hPa geopotential height map from

the NCEP–NCAR reanalysis (Kalnay et al. 1996)

displays a large-scale cyclonic circulation northwest of

theUnitedKingdom (Fig. 4a) and an associatedwesterly/

southwesterly flow over the country, which transports

warm and humid air from warmer parts of the Atlantic.

As in Christidis et al. (2013, 2015), we use flow pattern

correlations greater than 0.6 over the wider U.K. area

(black box in Fig. 4) to select modeled winters with cir-

culation similar to 2015/16. The 105 winters from the

FIG. 3. (a) DJF mean SSTs from monthly HadISST values used as boundary conditions in the ALL experiment.

(b) As in (a), but for the NAT experiment. In this case, modeledmonthly delta SST estimates were subtracted from

the HadISST data. All SSTs are anomalies relative to 1961–90. (c) The DJF mean delta SST pattern from monthly

model-based estimates of the SST change due to human influence used in this study. (d) The DJF mean delta SST

pattern estimated from HadISST observations after removing the trend.
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ALL simulations with HadGEM3-A are so partitioned

between 29 high-correlation and 76 low-correlation events

(Figs. 4b,c). The NAT simulations can be partitioned in a

similar way. Subsampling allows us to examine 1) how the

circulation affects the likelihood of extremes (by comparing

high- and low-correlation events in the actual climate) and

2) how anthropogenic forcings affect the likelihood of ex-

tremes developing under specific synoptic conditions (e.g.,

by comparing only high-correlation events in the ALL and

NAT experiments). One disadvantage of subsampling is

that the uncertainty in probability estimates derived from

smaller samples tends to increase.

In this studywe compute the probability, or return time

(inverse probability), of warm and wet U.K. winters with

and without human climatic influence, using whole sam-

ples of simulated winters, or subsamples, in order to

create certain classes of events as explained above. The

classes of events we consider are listed below:

d The general case. All simulated winters from the

coupled model experiments are used to construct

temperature and rainfall distributions that span the

entire variability range and yield the likelihood of

extremes under any possible conditions. Years 2010/

11–2019/20 are extracted from the ALL simulations to

represent the 2015/16 climate and a number of winters

are also extracted from control simulations, as ex-

plained earlier, without human climatic influence. In

total, we obtain samples of 860 and 3060 winters from

experiments with andwithout the anthropogenic effect.
d Events conditioned on the phase of ENSO. The

samples of DJF temperature and rainfall used in the

general case are grouped according to the phase of

ENSO in model simulations. ONI values greater than

0.5 correspond toElNiño conditions and less than20.5

to LaNiña conditions.We end upwith 353 El Niño and
166 La Niña winters for the actual climate and 832 El

Niño and 845 La Niña winters for the natural climate.
d Events conditioned on the state of the ocean. Atmo-

spheric model simulations of winter 2015/16 provide

the likelihood of extreme events developing under the

characteristic SST patterns observed that year. There

are 105 simulations for each of the ALL and NAT

experiment.
d Events conditioned on the state of the ocean and the

phase of the QBO. The 105 winters from each

HadGEM3-A experiment are partitioned between

those that have a strong positive QBO phase as in

2015/16 (index values greater than 0.7) and those that

do not. There are 29 winters with strongly positive

QBO in the ALL climate and 17 in the NAT climate.
d Events conditioned on the state of the ocean and the

atmospheric circulation. The 105 winters from each

HadGEM3-A experiment are partitioned between

those that have high correlations with the circulation

pattern over the United Kingdom in winter 2015/16

(correlation coefficient greater than 0.6) and those

that do not. There are 29 winters with high correla-

tions in the ALL climate and 43 in the NAT climate.

All approaches listed above provide valid ways of

looking at the same event, but frame the attribution

question slightly differently. While focusing on the

FIG. 4. Maps of the 500-hPa geopotential height (red contours)

and wind (blue vectors) in a wide North Atlantic region for winter

2015/16 from (a) the NCEP–NCAR reanalysis and the mean of

HadGEM3-A simulated winters with correlations (b) greater than

0.6 and (c) less than 0.6 with the reanalysis pattern over the region

marked by the black box.
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precise event with all its unique characteristics is im-

perative in forecasting, events are more loosely defined

in attribution research using classes, which marks a

crucial and sometimes confusing difference in termi-

nology. Although one could criticize attribution studies

for not describing the event in all its details, it could also

be argued that considering classes of events may provide

more useful information to decision makers. For ex-

ample, if exceeding a critical temperature threshold

triggers catastrophic heatwaves in a region, then

changes in the frequency of such threshold exceedances

would be of greater interest to adaptation planers than

changes in the likelihood of a single heatwave event that

developed under a very specific set of conditions. An-

other important difference between attribution and

forecasting is the effect of initialization. While retaining

memory of the initial conditions in model simulations

could strongly affect forecasting skill, attribution simu-

lations produced with the Hadley system are unin-

itialized and simply extended from the previous set of

runs as new ensembles are generated every quarter. We

test the effect of initialization by comparing tempera-

ture and rainfall distributions constructed with the 105

ALL HadGEM3-A simulations for winter 2015/16 with

distributions from 72 initialized runs produced by the

GloSea5 system for the same season. The GloSea5

simulations include two runs per day for all days in

November 2015, as well as three hindcast runs produced

four times in the same month. Before proceeding with

the results of our analyses, we first consider the suit-

ability of the models used in this work for event attri-

bution and present a number of simple evaluation

assessments in the next section.

3. Model evaluation

Event attribution relies largely on climate models,

which need to be carefully evaluated to ensure they are

fit for the purpose. Evaluation may encompass a range

of tests against independent observational (or in some

cases reanalysis) data that indicate whether models re-

produce well the statistics and climatology of the rele-

vant climatic variables and their extremes, as well as

other processes or drivers of extremes pertinent to the

case under investigation. The Hadley attribution system

was rigorously evaluated during the course of the

EUCLEIA project and found to be an excellent tool for

the attribution of several types of European extremes

(Vautard et al. 2018). Studies of individual events,

however, require tailored assessments of the models

used, as model performance may vary between different

regions and extreme types (Christidis et al. 2013). When

the ability of the model to capture predictable features

of events is important, then reliability diagrams, popular

in seasonal forecasting, may also be employed (Lott

et al. 2014). Here, however, we are more concerned

about classes of events than themodels’ forecasting skill.

We apply a number of well-established tests (examples

found in studies with the Hadley system in the special

reports of BAMS) to assess whether HadGEM3-A and

the CMIP5 models reproduce well the winter tempera-

ture and rainfall climatological distributions in the

United Kingdom and their variability and extremes, as

well as the influence of ENSO, the QBO, and the 2015/16

circulation pattern. Here we evaluate the CMIP5 multi-

model ensemble as a whole, instead of looking at indi-

vidual models. Alternatively, only the best models could

have been utilized in the analysis, but since the perfor-

mance of the overall ensemble is found to be good, we

decided to proceedwith all models and so take advantage

of larger sample sizes, which help estimate probabilities

with greater confidence.

The climatological distributions of winter tempera-

ture and precipitation in theUnited Kingdom during the

period 1960–2013, which is common to all datasets, are

illustrated in Fig. 5. The similarity between the observed

andmodeledPDFs is testedwith a two-sidedKolmogorov–

Smirnov (KS) test. The null hypothesis stating that the

distributions are not significantly different can be rejected

at the 10% level (p values greater than 0.1). The models

also yield a realistic representation of the observed vari-

ability across different time scales, as suggested by power

spectra analyses (Figs. 6a,b), a common tool in model

evaluation (Gillett et al. 2000). The observed spectra lie

within the range of spectra produced with individual

HadGEM3-A and CMIP5 simulations. As expected, the

range of the CMIP5 models is wider because of the much

larger number of simulations that are able to capture more

extreme values.We next use theGPDdistribution to zoom

in on the warm and wet tails of the climatological PDFs

shown inFig. 5. The resulting return timeplots are shown in

Figs. 6c and 6d. When moving to more extreme events,

characterized by longer return times, the uncertainty in the

estimated probabilities increases, although the median of

the individualmodel simulations (not shown) is found to be

generally consistent with the observed estimates for ex-

tremes with return times of up to 10–20 years, similar to the

thresholds used in the attribution analysis. The observa-

tions are generally within the modeled range, with the ex-

ception of wet extremes with observed return times greater

than 20 years, which appear to be rarer in the HadGEM3-

A simulations. Such events, however, are not considered in

this study.Wefinally examine theU.K. winter temperature

and rainfall dependence on the QBO, the atmospheric

circulation pattern of 2015/16, and the ENSO phase [a

detailed assessment of the representation of ENSO by
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CMIP5 models can be found in Bellenger et al. (2014)].

Scatterplots of the observed temperature and rainfall

anomalies in recent decades plotted against the corre-

sponding QBO index, the correlation coefficient with the

2015/16 circulation pattern (black box of Fig. 4a), and the

ONI are shown in Fig. 7, together with a simple linear fit.

Linear fits produced with data from all the model simula-

tions combined (ALL experiment) are also plotted in

green. The QBO and circulation dependence are in-

vestigated with HadGEM3-A and the ENSO dependence

with CMIP5 models as in the subsequent attribution ana-

lyses. It is evident that QBO and ENSO have little influ-

ence on temperature and rainfall, but the presence of

westerly winter flow clearly increases the chances of warm

and wet winters in the United Kingdom. It needs to be

stressed here that the QBO and ENSOmay still affect the

chances of extremes as components of large-scale tele-

connections (Scaife et al. 2017), but their effect does not

appear to be prominent when each factor is considered

independently. Some weak trends may still be identified;

for example, CMIP5 indicates a moderate increase in

precipitation under La Niña conditions, but this is not ev-

ident in the observations. On the other hand, testing

whether the least squares fit has a zero slope indicates

statistically significant trends for the circulation effect

(Figs. 7b,e). The modeled trends in this case are in good

agreement with the ones computed with NCEP–NCAR

data. In conclusion, the model evaluation assessments

presented here suggest that both the HadGEM3-A and

CMIP5 ensembles are sufficiently good at describing ex-

treme events considered in our attribution analysis. Of

course the evaluation is limited to the simulations of the

historical climate (ALL)but, as in all attribution studies,we

assume themodel performance is of the same quality in the

hypothetical climate without the effect of human influence

(NAT).

4. Attribution

We use samples of modeled U.K. temperature and

rainfall to create the ALL and NAT distributions rep-

resentative of the climate in the winter of 2015/16 and

obtain estimates of the likelihood of threshold exceed-

ance. PDFs produced with all the CMIP5 data for the

general case (i.e., any possible atmospheric and oceanic

states) are shown in Fig. 8. For comparison, the PDFs

from the 105-member ensembles generated by the at-

mospheric model for winter 2015/16 are also plotted.

The latter are constrained by the observed SST patterns

as prescribed via the boundary conditions. Both CMIP5

and HadGEM3-A show a clear shift in the temperature

distribution, which means that human influence has in-

creased the chances of a warm winter in 2015/16. There

is less consistency in the case of rainfall, with the coupled

models suggesting a shift to wetter conditions and the

atmospheric model indicating no major change.

Indeed, a KS test suggests that the ALL and NAT

rainfall distributions from HadGEM3-A are not signif-

icantly different. As will be discussed later, this dis-

crepancy may stem from the prescribed SST patterns for

2015/16 and, more specifically, the NAT boundary

conditions that may result in wetter winters in the

natural world.

Estimates of the return time of warm and wet win-

ters, defined relative to the 1-in-10-year climatologi-

cal extremes, were derived with CMIP5 models and

HadGEM3-A and are illustrated in Figs. 9 and 10 re-

spectively. The 5%–95% uncertainty range from the

bootstrapping procedure is wider in the HadGEM3-A

FIG. 5. Normalizeddistributions of thewintermean (a) temperature

and (b) rainfall anomaly in theUnitedKingdomover the period 1960–

2013 estimated with observational data (colored histograms), an en-

semble of CMIP5 models (solid black), and an ensemble of 15

HadGEM3-A simulations (dashed black). All simulations include the

effect of both natural and anthropogenic forcings. KS tests indicate no

significant difference between the modeled PDFs and those from

observational data (p values marked on the panels). Anomalies are

relative to 1961–90.
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estimates because of the use of smaller samples, which

impacts the precision of extreme probability computa-

tions. The leftmost panel sections show return time es-

timates for the general case from CMIP5models (Fig. 9)

and year 2015/16 from the atmospheric model (Fig. 10).

A more than threefold decrease in the return time of

warm events is computed with both CMIP5 and the at-

mospheric model, although HadGEM3-A gives some-

what smaller probabilities (higher return times) for

temperature extremes. As also suggested by the distri-

butions in Fig. 8b, while CMIP5 shows a clear decrease

in the return time of wet extremes (as winters become

wetter), in the HadGEM3-A analysis both the ALL and

NAT experiments provide very similar return times

(Fig. 10b, leftmost panel section). This difference ap-

pears to arise because the NAT return times estimated

with HadGEM3-A are smaller than the ones estimated

with the CMIP5 models, whereas the ALL return times

are in better agreement. It is therefore suggested that

the discrepancy may be down to the NAT boundary

conditions prescribed in the HadGEM3-A simula-

tions. The NAT SST patterns for winter 2015/16

(Fig. 3b) display a strong gradient in the North

Atlantic that may lead to more storms driven over the

United Kingdom and hence higher likelihood of

rainfall. Interestingly, if the observational delta SST

pattern had been employed instead (Fig. 3d), the

NAT rainfall probabilities might have looked very

different. The reason is that this delta SST pattern

shows an area of cooling in central Atlantic (south of

Greenland) that, when subtracted from the 2015/16

SSTs, would lead to a much reduced North Atlantic

gradient and possibly a reduction in rainfall proba-

bility. As in Christidis and Stott (2014) these results

suggest that the NAT boundary conditions are the

largest uncertainty in attribution studies with atmo-

spheric models that may be critical in regions

strongly influenced by the ocean. We also estimated

the NAT probability of rainfall extremes with

HadGEM3-A data for the last 10 winters (2004–13)

of the longer multidecadal simulations, which include a

range of different SST patterns, different for every year.

Figure 11 shows that when using this wider range of

oceanic conditions (rather than the 2015/16 pattern), the

estimated return time is consistent with the CMIP5 re-

sults. This confirms that the discrepancy between the

FIG. 6. Power spectra for the winter mean (a) temperature and (b) rainfall in the U.K. over the period 1960–2013

estimated from observations (colored) and plotted together with the range from individual simulations with CMIP5

models (solid black) and HadGEM3-A (dashed black). Similarly, observed estimates of the return time of very

(c) warm and (d) wet winters are illustrated together with the range obtained from model simulations. Anomalies

are relative to 1961–90.
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CMIP5 and HadGEM3-A probabilities of wet winters is

down to the prescribed boundary conditions in the NAT

simulations for year 2015/16.

We next use subsamples ofmodel data, as explained in

section 2c, to investigate the effect of several possible

drivers. First, we partition the CMIP5 data between the

ENSO phases to estimate the return times of extremes

under El Niño (ONI . 0.5) and La Niña (ONI , 20.5)

conditions in the ALL and NAT climate (right panel

sections of Fig. 10). ENSO is shown to have hardly any

effect on winter U.K. temperature extremes, which have

similar return times under both ENSO phases, with or

without human influence on the climate. Anthropogenic

forcings increase the chances of warm extremes in a

similar way under different ENSO phases. The ENSO

effect is stronger for winter rainfall and leads to an in-

crease in the chances of wet extremes (smaller return

times) during La Niña conditions. Our analysis is based

on multimodel ensembles, but we also confirmed this

result with individual models and found that for the

NAT climate, 60% of the models (20 out of 35) show an

increase in wet extremes under La Niña. A similar link

between ENSO and European winter precipitation was

also found in Pozo-Vázquez et al. (2005). We next look

at the effect of the QBO under 2015/16 oceanic condi-

tions by grouping HadGEM3-A simulated winters with

strong QBO (index greater than 0.7) and all other win-

ters (index less than 0.7). A comparison with weak QBO

conditions (index less than 20.7) was also considered

but found not to change the main conclusions while in-

creasing uncertainty due to smaller sample sizes. Esti-

mated return times for different QBO conditions are

similar in both the ALL and NAT climate (Fig. 10),

although a strong QBO may lead to a small but highly

uncertain increase in the chances of warm extremes. The

effect of the synoptic pattern in winter 2015/16 (Fig. 4a)

is investigated next based on HadGEM3-A simulated

winters with high and low pattern correlations. We

find that persistent westerly flow strongly influences

extreme events (i.e., increases the chances of warm

FIG. 7. The relationship between the winter mean temperature in theUnitedKingdom and (a) theQBO, (b) atmospheric flow similar to

2015/16, and (c) ENSO. (d)–(f)As in (a)–(c), but for rainfall. The crosses correspond to observed temperature and rainfall data and indices

from NOAA and NCEP–NCAR datasets. Linear least squares fits are shown in black. Linear fits to data from model simulations are also

plotted in green. The period covered is 1979–2012 for QBO and the atmospheric flow and 1971–2013 for ENSO.
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and wet winters) (Fig. 10). This influence is also evi-

dent in the NAT climate, although given the synoptic

conditions in low correlation winters and the absence

of anthropogenic warming, high winter temperatures

become so rare that their likelihood cannot be accu-

rately estimated. The plotted return times in Fig. 10

illustrate how both circulation and anthropogenic

forcings have a strong impact on the likelihood of

extremes. In this case the framing of the attribution

question is important, as one may wish to consider

human influence in general (irrespective of the cir-

culation effect) or account for the circulation as well.

Although both approaches are valid, the latter may

provide more useful insights for events like the U.K.

winter storms of 2013/14, which also developed un-

der similar large-scale conditions (Christidis and

Stott 2015). Finally, we also assessed the effect of

initialization by comparing HadGEM3-A-derived re-

turn times of extreme events in the actual climate (ALL)

with those from GloSea5 initialized forecast simula-

tions. Both ensembles provide very similar estimates

for warm and wet events, which suggests that initiali-

zation is not vital in attribution studies of these event

classes.

Event attribution studies commonly report relative

changes in the likelihood of extremes, using metrics like

the fraction of attributable risk (Allen 2003) or the risk

ratio. Table 2 provides risk ratio estimates that measure

the anthropogenic effect on warm and wet U.K. winters,

but for different ways of framing the attribution ques-

tion, namely different classes of events. We present the

best estimate (50th percentile) together with the 5%–95%

uncertainty range, butmainly focus on the 5th percentile in

the discussion below, as the most conservative measure of

the effect of human influence. The likelihood of warm

events is found to increase by at least a factor of 3–4 for all

cases examined here, apart from analyses conditioned on

circulation patterns different from 2015/16 or a strong

QBO. However, the risk ratio estimates in these two cases

are highly uncertain, either because the NAT probabilities

are near zero (circulation) or because the samples are too

small to yield reliable probability estimates for extremes

(QBO). We conclude that even though the prescribed

SSTs and prevalent circulation flow may influence the

probability of warm winters in the actual and natural cli-

matic regimes, they do not appear to have a strong effect

on the relative change in the probability. A three- or

fourfold increase in the chances of warm winters is our

most conservative estimate for the general case, but also

for events conditioned on the 2015/16 oceanic state and

synoptic situation. In contrast, there is amarked difference

between the risk ratios for wet winters from CMIP5

models and HadGEM3-A. The coupled models indicate

an increase in the likelihood of such events due to an-

thropogenic influence by at least a factor of 1.5–2, in-

dependent of the ENSO phase. On the other hand, the

5%–95% uncertainty range of the HadGEM3-A risk ra-

tios encompasses both decreases (ratio estimates less than

unity) and increases (ratio estimates greater than unity) in

the likelihood of wet events conditioned on prescribed

SST patterns and additional possible drivers. While the

ALL probabilities in these cases are consistent with those

obtained from coupled models, the NAT probabilities, as

already discussed, are greater than the CMIP5 estimates

and so lead to smaller risk ratios. We therefore conclude

that the robustness of the HadGEM3-A findings very

much depends on the quality of the boundary conditions

employed in theNATexperiment. UsingHadGEM3-A to

estimate probabilities of wet events for the general case

(by concatenating recent years with different oceanic

FIG. 8. Normalized distributions of thewintermean (a) temperature

and (b) rainfall anomaly representative of winter 2015/16 in the

United Kingdom and estimated with (red) and without (green)

the effect of human influence using an ensemble of CMIP5models

(solid lines) and an ensemble of 105 HadGEM3-A simulations

(histograms). The solid vertical lines mark the observed values in

2015/16 and the dashed vertical lines correspond to 1-in-10-year

events in the period 1961–90.
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conditions), we obtained results consistent with

CMIP5 (Fig. 11), which implies that while the model

itself is no worse for attribution than the coupled

models, analyses conditioned on specific SST patterns

will be as good as the boundary conditions they em-

ploy. Results for warm events seem to be less sensitive

to the boundary conditions. HadGEM3-A probabili-

ties of warm winters are a bit lower than those derived

with CMIP5. This, however, is the case not only in the

NAT but also in the ALL experiment, which could

indicate that the state of the ocean in 2015/16 may

somewhat alter the return times relative to the general

case, although not the risk ratio. It is possible, for

example, that the presence of cold SST anomalies in

central Atlantic during DJF 2015/16 (Fig. 3a) in con-

junction with a westerly flow may have reduced the

likelihood of warm events that year. Therefore, ana-

lyses conditioned on the state of the ocean can still

convey useful information, but the sensitivity of the

results to the NAT boundary conditions needs to be

carefully considered.

5. Discussion

Our attribution assessment of winter of 2015/16 in the

United Kingdom contributes to the strong evidence that

human influence has increased the likelihood of warm

extremes and adds to the increasing number of studies

indicating changes in the likelihood of wet extremes too

(Herring et al. 2016b). It is also consistent with a climatic

shift toward warmer and wetter winters in the region

indicated by model projections (Murphy et al. 2009; van

Oldenborgh et al. 2013, annex I). Anthropogenic forc-

ings are found to increase the chance of exceeding warm

winter temperatures that occurred on average once a

decade in a recent climatological period (1961–90), by at

least a factor of 3–4. The presence of a predominately

westerly circulation further increases the likelihood of

warm extremes. A more modest increase in the likeli-

hood of 1-in-10-year heavy rainfall climatological ex-

tremes of at least a factor of 1.5–2 is also reported,

though the precise increase in years when other possible

drivers come into play is more difficult to be estimated.

While our attribution results are undoubtedly of great

interest, this study is not primarily focused on the ref-

erence event, but instead uses it to examine the sensi-

tivity of attribution results to different framing choices.

A number of possible drivers of extreme U.K. winters

(other than anthropogenic climate change) are consid-

ered in this study. Although some of them are known to

play a key role in some parts of the world, they are found

to have little, if any, impact on the attribution of U.K.

FIG. 9. CMIP5 model estimates of the return time of extremely (a) warm and (b) wet

winters in the United Kingdom with (red) and without (green) the effect of anthropogenic

forcings. The left section of the panels illustrates the general case (i.e., events occurring under

any conditions), while the right section shows results conditioned on the phase of ENSO.

Crosses correspond to the best estimate (50th percentile) and whiskers mark the 5%–95%

uncertainty range.
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winters. For example, the presence of strong El Niño
conditions during the warm winter of 2015/16 was found

to have no effect on the likelihood of warm extremes. Of

course, it has long been established that the occurrence

of extremes in regions worldwide may be favored

by a certain phase of ENSO, but this link appears to

be more tenuous in the U.K. winter temperatures.

Nevertheless, a stronger ENSO influence is suggested on

wet events, with their likelihood increasing under La

Niña conditions, although such a change is not yet evi-

dent in the observations. If this is indeed the case, then

El Niño conditions in 2015/16 were not conducive to the

observed high rainfall, which, however could have been

favored by other drivers such as the synoptic conditions.

In terms of framing attribution questions, we find that

ENSO did not affect the change in the risk of the ref-

erence warm and wet winter due to human influence,

despite the fact that it may exert some influence on the

likelihood of wet events. The strong westerly phase of

the QBO is found to be unlikely to affect the likelihood

of warm and wet events. The QBO, however, may still

play an important role as part of large-scale dynamical

interactions. For example, a known teleconnection be-

tween the North Atlantic circulation to the positive

phase of El Niño, the westerly phase of the QBO, and a

strong stratospheric polar jet enabled a successful fore-

cast of the extreme winter of 2015/16 (Scaife et al. 2017).

On the other hand, many attribution studies are mainly

FIG. 10. HadGEM3-Aestimates of the return time of extremely (a)warmand (b)wetwinters

in theUnitedKingdomwith (red) andwithout (green) the effect of anthropogenic forcings. The

left section of the panels illustrates estimates obtained using all available model data for winter

2015/16, which are conditioned on observed SST anomalies. For comparison estimates with

GloSea5 initialized simulations (labeled ALL s/fcst) are also shown. The middle section of the

panels shows results conditioned on the phase of the QBO. The right section shows results for

winters with similar (ALL synop) and dissimilar (ALL other) atmospheric flow toDJF 2015/16.

Crosses correspond to the best estimate (50th percentile) and whiskers mark the 5%–95%

uncertainty range.

FIG. 11. Estimates of the return time of extremely wet winters in the

United Kingdom with (red) and without (green) the effect of anthro-

pogenic forcings computed with CMIP5 models and an AGCM

(HadGEM3-A). AGCM estimates are shown for two sets of boundary

conditions: one for the range of SSTs in recent years (2004–13) and for

the 2015/16 SST pattern. Crosses correspond to the best estimate

(50th percentile) andwhiskersmark the 5%–95%uncertainty range.
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concerned with broader classes of events, for which the

QBO, when considered in isolation, may not be a critical

factor. Attribution assessments that account for the

synergy between individual factors (in this case the

QBO, ENSO, and the polar vortex) would require a

more stringent class of events to be defined, whereby

each factor corresponds to the observed conditions at

the time of the event. However, creating a sample of

events for such a class by subselecting simulated winters

that meet all the necessary criteria would require con-

siderably larger ensembles. In contrast to ENSO and the

QBO (examined separately), the dominant winter cir-

culation pattern is found to have a strong influence on

the type of extremes considered here.

Persistent warm and humid westerly and southwest-

erly winds over the United Kingdom are expected to

increase the chances of high winter temperature and

rainfall in the United Kingdom as demonstrated in this

study. Alternative methodologies based on circulation

analogs have also been developed to examine the effect

of circulation in attribution studies of extreme events

(Cattiaux and Yiou 2012; Yiou and Cattiaux 2014). Al-

though circulation is clearly shown to affect the return

time of extremes, we again find no strong effect on the

relative change (i.e., the changing risk of extremes due

to anthropogenic forcings). An important aspect that

has not been investigated here is the possibility of dy-

namical changes under climate change that may make

certain atmospheric flows more or less frequent.

Vautard et al. (2016) introduced a novel way of sepa-

rating the thermodynamical and dynamical contribu-

tions to the changing odds of extremes and claimed

that a third of the increase on the likelihood of the U.K.

winter storms of 2013/14 were attributable to dynamical

changes. Here we make no attempt to account for any

dynamical effect, but consider the same flow pattern in

both the ALL and NAT climate assuming no significant

change in its frequency in these two types of climate.We

suggest that this is a reasonable assumption, based on

the work of Christidis and Stott (2015), who identified

only a small and not yet robustly established trend in the

frequency of a westerly flow pattern similar to the one

considered here. The authors of that study examined the

modeled frequency of a winter circulation pattern over

the United Kingdom similar to the one we consider here

and identified a positive and significant trend since 1900,

which, however, appears small in the context of internal

variability [more discussion and an illustration of results

are available in the supplemental material of Christidis

and Stott (2015)]. Hence, we consider the thermodynamic

response of the climate to external forcings to be essential

in event attribution, although consideration of the dy-

namical response in attribution studies would certainly be

an advantage.

Studies with atmospheric models conditioning their

attribution assessments on the state of the ocean are

inevitably affected by uncertainty in the representation

on the ocean temperature in the counterfactual climate

without human influence.While the main features of the

observed SSTs, such as ENSO-related anomalies, are

preserved in the NAT boundary conditions, their mag-

nitude and other general pattern characteristics may

vary depending on the delta SST estimate used in the

analysis. Here we found that conditioning on the SSTs

has little influence on the likelihood of wet events in the

ALL experiment, but increases it in the NAT climate.

Such an increase is not evident when a range of oceanic

states is employed in the NAT experiment, suggesting

that the reliability of the result depends on how realistic

the underlying delta SST estimate is. The sensitivity to

TABLE 2. Anthropogenic effect on the likelihood of warm and wet winters in the United Kingdom.

Attribution question Temperature Rainfall

What is the change in the

likelihood of a

warm/wet winter. . .

Prob(ALL)/Prob (NAT) Prob(ALL)/Prob (NAT)

Best estimate

(5%–95% range)

Best estimate

(5%–95% range)

Coupled models (CMIP5) in the general case? 3.46 (3.17 to 3.78) 2.02 (1.76 to 2.36)

in El Niño years? 3.51 (3.00 to 4.14) 2.10 (1.52 to 2.83)

in El Niña years? 4.14 (3.33 to 5.14) 2.71 (1.97 to 3.77)

AGCM (HadGEM3-A) for SST anomalies similar to 2015/16? 6.04 (3.60 to 13.71) 0.89 (0.53 to 1.56)

for winter circulation (and SST anomalies)

similar to 2015/16?

5.66 (3.14 to 12.08) 1.11 (0.65 to 1.79)

for winter circulation different from

(but SST anomalies similar to) 2015/16?

.1000 (695 to .1000) 4.20 (0.49 to .1000)

for winters with strong QBO (and SST

anomalies similar to 2015/16)?

3.04 (1.50 to .1000) 1.35 (0.27 to .1000)

for winters with weak QBO (and SST

anomalies similar to 2015/16)?

6.64 (3.59 to 49.75) 0.84 (0.48 to 1.65)
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delta SSThas beenhighlighted as the largest uncertainty in

studies with atmospheric models and generally two main

approaches have been employed to account for it. The first

involves generating multiple NAT ensembles with differ-

ent possible delta SSTs from individual models. While this

would in effect spanmuch of the uncertainty range, it does

not help reduce it, if unreliable patterns of the SST change

are also utilized. The second approach attempts to im-

prove the representation of the delta SST instead. Better

patterns may be obtained by multimodel ensembles that

could in principle reduce the effect of errors in single-

model estimates, or bymaking use of observed SST trends.

Although we have not used an observational delta SST

estimate in our model runs, we find that it indicates some

differences from the multimodel pattern and thus con-

clude thatmorework is necessary to better account for the

uncertainty in the NAT boundary conditions.

Finally, in this paper we only considered methodolo-

gies within the popular risk-based framework for event

attribution that provides probabilistic assessments for

classes of events which share some important charac-

teristics with the event under consideration. A different

thread of work has also been proposed that considers the

actual event in a deterministic way (Shepherd 2016).

This ‘‘storyline’’ approach builds up a case for the par-

ticular event by estimating the contributions of indi-

vidual drivers. Both approaches provide useful insights

to decision makers. If a specific extreme event becomes a

benchmark for resilience, a storyline analysis can be

preferable. If, on the other hand, the interest is in pro-

tecting against the future occurrence of similar types of

events, a risk-based approach may be more useful. At-

tribution systems built on such risk-based approaches

have taken center stage in the development of event at-

tribution science and, moving forward, ongoing research

is bringing them closer to operationalization and in-

tegration into future climate services.
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