152 research outputs found

    Plasmonic Gold Helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits

    Get PDF
    Electron beam induced deposition (EBID) currently provides the only direct writing technique for truly three-dimensional nanostructures with geometrical features below 50 nm. Unfortunately, the depositions from metal-organic precursors suffer from a substantial carbon content. This hinders many applications, especially in plasmonics where the metallic nature of the geometric surfaces is mandatory. To overcome this problem a post-deposition treatment with oxygen plasma at room temperature was investigated for the purification of gold containing EBID structures. Upon plasma treatment, the structures experience a shrinkage in diameter of about 18 nm but entirely keep their initial shape. The proposed purification step results in a core-shell structure with the core consisting of mainly unaffected EBID material and a gold shell of about 20 nm in thickness. These purified structures are plasmonically active in the visible wavelength range as shown by dark field optical microscopy on helical nanostructures. Most notably, electromagnetic modeling of the corresponding scattering spectra verified that the thickness and quality of the resulting gold shell ensures an optical response equal to that of pure gold nanostructures

    Electromechanically Tunable Suspended Optical Nano-antenna

    Full text link
    Coupling mechanical degrees of freedom with plasmonic resonances has potential applications in optomechanics, sensing, and active plasmonics. Here we demonstrate a suspended two-wire plasmonic nano-antenna acting like a nano-electrometer. The antenna wires are supported and electrically connected via thin leads without disturbing the antenna resonance. As a voltage is applied, equal charges are induced on both antenna wires. The resulting equilibrium between the repulsive Coulomb force and the restoring elastic bending force enables us to precisely control the gap size. As a result the resonance wavelength and the field enhancement of the suspended optical nano-antenna (SONA) can be reversibly tuned. Our experiments highlight the potential to realize large bandwidth optical nanoelectromechanical systems (NEMS)

    Unveiling the optical properties of a metamaterial synthesized by electron-beam-induced deposition

    Get PDF
    The direct writing using a focused electron beam allows for fabricating truly three-dimensional structures of sub-wavelength dimensions in the visible spectral regime. The resulting sophisticated geometries are perfectly suited for studying light-matter interaction at the nanoscale. Their overall optical response will strongly depend not only on geometry but also on the optical properties of the deposited material. In case of the typically used metal-organic precursors, the deposits show a substructure of metallic nanocrystals embedded in a carbonaceous matrix. Since gold-containing precursor media are especially interesting for optical applications, we experimentally determine the effective permittivity of such an effective material. Our experiment is based on spectroscopic measurements of planar deposits. The retrieved permittivity shows a systematic dependence on the gold particle density and cannot be sufficiently described using the common Maxwell-Garnett approach for effective medium.Comment: 7 pages, 4 figure

    Observation of strongly enhanced photoluminescence from inverted cone-shaped silicon nanostuctures

    Get PDF
    Silicon nanowires (SiNWs) attached to a wafer substrate are converted to inversely tapered silicon nanocones (SiNCs). After excitation with visible light, individual SiNCs show a 200-fold enhanced integral band-to-band luminescence as compared to a straight SiNW reference. Furthermore, the reverse taper is responsible for multifold emission peaks in addition to the relatively broad near-infrared (NIR) luminescence spectrum. A thorough numerical mode analysis reveals that unlike a SiNW the inverted SiNC sustains a multitude of leaky whispering gallery modes. The modes are unique to this geometry and they are characterized by a relatively high quality factor (Q ~ 1300) and a low mode volume (0.2 < (λ/neff)3 < 4). In addition they show a vertical out coupling of the optically excited NIR luminescence with a numerical aperture as low as 0.22. Estimated Purcell factors Fp ∝ Q/Vm of these modes can explain the enhanced luminescence in individual emission peaks as compared to the SiNW reference. Investigating the relation between the SiNC geometry and the mode formation leads to simple design rules that permit to control the number and wavelength of the hosted modes and therefore the luminescent emission peaks

    A Sub-λ3\rm \lambda^{3}-Volume Cantilever-based Fabry-P\'erot Cavity

    Full text link
    We report on the realization of an open plane-concave Fabry-P\'erot resonator with a mode volume below λ3\lambda^3 at optical frequencies. We discuss some of the less common features of this new microcavity regime and show that the ultrasmall mode volume allows us to detect cavity resonance shifts induced by single nanoparticles even at quality factors as low as 100100. Being based on low-reflectivity micromirrors fabricated on a silicon cantilever, our experimental arrangement provides broadband operation, tunability of the cavity resonance, lateral scanning and promise for optomechanical studies

    InGaN/GaN multiquantum well nano-LEDs for a case study

    Get PDF
    The scattering in the light emission wavelength of semiconductor nano-emitters assigned to nanoscale variations in strain, thickness, and composition is critical in current and novel nanotechnologies from highly efficient light sources to photovoltaics. Here, we present a correlated experimental and theoretical study of single nanorod light emitting diodes (nano-LEDs) based on InGaN/GaN multiquantum wells to separate the contributions of these intrinsic fluctuations. Cathodoluminescence measurements show that nano-LEDs with identical strain states probed by non-resonant micro-Raman spectroscopy can radiate light at different wavelengths. The deviations in the measured optical transitions agree very well with band profile calculations for quantum well thicknesses of 2.07–2.72 nm and In fractions of 17.5–19.5% tightly enclosing the growth values. The nanorod surface roughness controls the appearance of surface optical phonon modes with direct implications on the design of phonon assisted nano-LED devices. This work establishes a new, simple, and powerful methodology for fundamental understanding as well as quantitative analysis of the strain – light emission relationship and surface-related phenomena in the emerging field of nano-emitters.1\. Auflag

    Kinetic study of H-terminated silicon nanowires oxidation in very first stages

    Get PDF
    Oxidation of silicon nanowires (Si NWs) is an undesirable phenomenon that has a detrimental effect on their electronic properties. To prevent oxidation of Si NWs, a deeper understanding of the oxidation reaction kinetics is necessary. In the current work, we study the oxidation kinetics of hydrogen- terminated Si NWs (H-Si NWs) as the starting surfaces for molecular functionalization of Si surfaces. H-Si NWs of 85-nm average diameter were annealed at various temperatures from 50°C to 400°C, in short-time spans ranging from 5 to 60 min. At high temperatures (T ≄ 200°C), oxidation was found to be dominated by the oxide growth site formation (made up of silicon suboxides) and subsequent silicon oxide self-limitation. Si-Si backbond oxidation and Si-H surface bond propagation dominated the process at lower temperatures (T < 200°C)

    A novel copper precursor for electron beam induced deposition

    Get PDF
    A fluorine free copper precursor, Cu(tbaoac)2 with the chemical sum formula CuC16O6H26 is introduced for focused electron beam induced deposition (FEBID). FEBID with 15 keV and 7 nA results in deposits with an atomic composition of Cu:O:C of approximately 1:1:2. Transmission electron microscopy proved that pure copper nanocrystals with sizes of up to around 15 nm were dispersed inside the carbonaceous matrix. Raman investigations revealed a high degree of amorphization of the carbonaceous matrix and showed hints for partial copper oxidation taking place selectively on the surfaces of the deposits. Optical transmission/reflection measurements of deposited pads showed a dielectric behavior of the material in the optical spectral range. The general behavior of the permittivity could be described by applying the Maxwell–Garnett mixing model to amorphous carbon and copper. The dielectric function measured from deposited pads was used to simulate the optical response of tip arrays fabricated out of the same precursor and showed good agreement with measurements. This paves the way for future plasmonic applications with copper-FEBID
    • 

    corecore