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Abstract
Direct writing using a focused electron beam allows for fabricating truly three-dimensional
structures of sub-wavelength dimensions in the visible spectral regime. The resulting
sophisticated geometries are perfectly suited for studying light–matter interaction at the
nanoscale. Their overall optical response will strongly depend not only on geometry but also on
the optical properties of the deposited material. In the case of the typically used metal–organic
precursors, the deposits show a substructure of metallic nanocrystals embedded in a
carbonaceous matrix. Since gold-containing precursor media are especially interesting for optical
applications, we experimentally determine the effective permittivity of such an effective
material. Our experiment is based on spectroscopic measurements of planar deposits. The
retrieved permittivity shows a systematic dependence on the gold particle density and cannot be
sufficiently described using the common Maxwell–Garnett approach for effective medium.

S Online supplementary data available from stacks.iop.org/nano/27/025705/mmedia
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1. Introduction

Nowadays, the fast development of nanofabrication methods
provides access to functional structures with geometries of
sub-wavelength dimensions even in the visible regime.
Thereby, fundamental questions of light–matter interaction

can be addressed as done within the intensely studied field of
nano-optics. In particular, nanostructures made of materials
having a free electron gas [1], excitable to collective oscil-
lations by light (plasmon-polaritons), provide the possibility
of tailored light manipulation and concentration [2–4]. Such
sub-wavelength structures are key for the design of meta-
materials [5]. However, the fabrication of truly three-dimen-
sional nanostructures still represents a significant challenge.
While, for example, direct laser writing provides three-
dimensional and purely metallic [6] as well as dielectric [7]
structures, it is limited primarily not in terms of optical
resolution, but most likely due to diffusion constraints during
the electroless plating. In contrast, direct writing using a
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focused electron beam is capable of delivering three-dimen-
sional features, smaller than tens of nanometer in a highly 
flexible and precise single-step process [8–10]. The electron 
beam induced deposition (EBID) process is based on local 
decomposition of inserted precursor-gas molecules by an 
electron beam within a vacuum chamber of a scanning elec-
tron microscope. Since typical precursors are of the metal-
organic type, not only their metallic constituents remain after 
deposition, although this would be the ideal case. Instead, a 
substantial amount of ligand components as well as elements 
of the residual gas in the vacuum chamber (carbon, oxygen 
and hydrogen) are incorporated [8, 11]. Thus, the resulting 
composite can be viewed as a metamaterial or an effective 
material by itself, consisting of single-crystalline nano-
particles (e.g. gold) embedded in a carbonaceous matrix [10]. 
While the electric properties of granular materials such as the 
EBID material are well understood [12] and proven to be 
promising for sensing applications [13, 14], a complete 
optical description of EBID metamaterials based on a com-
bined experimental and theoretical study has not been 
reported yet. This is caused by the relatively small areas 
which can be conventionally fabricated with the EBID pro-
cess, not allowing for optical characterization with standard 
methods such as ellipsometry. First attempts using micro-
ellipsometry showed a behaviour close to a Maxwell–Garnett 
effective medium for a gold-containing EBID material [15]. 
Recently, the Maxwell–Garnett theory was also used to 
describe material properties of helices made of platinum-
EBID composite [16] to numerically study their circular 
dichroism. While the overall agreement between experiment 
and numerical simulations was reasonable, distinct deviations 
became obvious for both the long wavelength range and the 
actual strength of the observed optical activity [16]. This trend 
was also emphasized in a numerical study of similar com-
posite materials [17].

Here, we present the results of spectrometric measure-
ments in combination with a numerical algorithm based on
the transfer-matrix approach for retrieval of the permittivity of
gold-EBID 10×10 μm2 pad-like deposits (see figure 1(c)).
The investigation concerns deposits of different thicknesses to
systematically study the dependence of the permittivity on the
density of the nanoinclusions in the carbonaceous matrix. In
addition, the comparison of analytical results based on Mie
theory with an effective medium model such as Maxwell-
Garnett proves that although the dipole resonance of the gold
particles dominantly contributes to the optical response of the
EBID composite, the conventional Maxwell-Garnett approach
cannot be employed to describe the effective optical proper-
ties of the composite. The presented experimentally retrieved
permittivity is expected to give better understanding of optical
performance of nanostructures fabricated via EBID, paving
the way for sophisticated nano-optic applications.

2. Sample preparation

The experimental investigation started with the fabrication of
a substrate which consists of a 170 μm thick glass (BK7) plate

with a conductive thin layer of indium tin oxide (ITO) on
top5. Both materials were characterized using ellipsometry
and show typical properties6. The same ellipsometry mea-
surement was used to determine most accurately the thickness
of the ITO coating (36 nm).

The EBID process itself was carried out in a vacuum
chamber of a dual-beam instrument (FEI Strata DB 235)
equipped with a gas-injection system for dimethyl-gold(III)-
acetyl-acetonate (Me2Au(acac)) as the precursor gas [18]. The
injected precursor molecules adsorb, diffuse and desorb onto
the sample surface where they are locally cracked by the
focused electron beam [19]. Thereby, the EBID technique not
only allows for the realization of complex three-dimensional
geometries [16, 20] but also for depositing them on even non-
planar substrates, if these are at least weakly conductive [10].
During the molecule dissociation, their non-volatile parts
form the deposit while the volatile constituents are pumped
out [18].

The deposition process depends on the energy and cur-
rent of the electron-beam, and on the dwell time (the time the
beam resides at each position) as well as on the scanning
raster. All these factors were previously optimized for fabri-
cation of high-resolution three-dimensional nanostructures
[10]. The aim in the current work was to keep the deposition
parameters of the pad deposits as close as possible near the
range used for nanostructures to unveil their material prop-
erties. Correspondingly, the retrieved permittivity reliably
describes the material of nanostructures written by EBID.

Figure 1. (a) Microscopy setup for spectral measurements of EBID
nanopads. The sample is illuminated with white light emitted by a
halogen-lamp. A beam splitter (BS) between the lamp and the first
microscope objective (MO) guides part of the reflected light onto a
detector. The central part of the nanopad is imaged onto a pinhole
with a diameter of 600 μm placed in front of the detectors. (b) Cross-
section through the nanopad and the substrate (layer thicknesses are
not drawn to scale). (c) Scanning electron micrograph of an
investigated EBID pad.

5 Commercial ITO-on-glass substrate was avoided due to undefined
thickness of the ITO coating and its pronounced crystallinity causing strong
scattering effects.
6 see supporting information available at stacks.iop.org/nano/27/025705/
mmedia.
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Since the optimized parameters would lead to an unrealisti-
cally long deposition time for such deposits, the dwell time
was drastically reduced down to 1μs and the lateral sizes were
restricted to 10×10 μm2 while maintaining the other para-
meters (see scanning electron micrograph of a typical EBID
pad in figure 1(c)). For the systematic investigation, EBID
deposits with thicknesses ranging from 15 nm up to 50 nm
(far below the Fabry–Pérot cavity condition) were fabricated
and topographically characterized by atomic force micro-
scopy (AFM). The AFM scans confirmed that at the edges all
pads have increased thickness with respect to the perfectly
smooth and flat interior. This is caused by the low pressure of
the precursor gas [18], resulting in a mass-transport-limited
(also called molecule-limited) deposition regime [21–23]. In
this regime all available precursor molecules within the
square deposition region are consumed and dissociated by the
primary and the secondary electrons. This leads to a decreased
deposition rate in the central area as well as to stronger co-
deposition of carbon from the residual chamber gases
[19, 24]. The diffusion of the intact precursor molecules
outside the irradiated region causes an increased precursor
supply at the edges, leading to enhanced deposition there
[22]. Hence, each fabricated pad exhibits a 9×9μm2 large
surface area of high quality and constant thickness. These
were utilized for spectroscopic measurements in an optical
microscopic setup.

3. Methods

To measure optical spectra, a home-built microscopic setup
was used (see figure 1(a)). A halogen lamp emitted unpolar-
ized and noncoherent light within the spectral range of
interest between 480 nm and 900 nm. The sample was illu-
minated using a 60×microscope objective, which also col-
lected the reflected light. For separation of the incident and
the reflected light, a beam splitter was used between the
source and the objective. The position of the microscope
objective relative to the sample surface was carefully adjusted
to obtain plane-wave illumination at normal incidence and to
image the sample surface onto the detector plane. The area of
interest could be selected using a pinhole in the image plane.
The size of this additional aperture was chosen to be 600 μm
in diameter, guaranteeing the measurement of the signal
solely from the flat inner part of the deposit, while
maintaining a sufficient signal-to-noise ratio. Each EBID pad
was measured separately by placing it on the optical axis
such that the propogation of the incoming plane-wave
was normal with regard to the sample surface. In the
same way, the light transmitted through the sample was
measured.

The experimental scheme described above permits
interpreting the measurement data as spectra of reflected (IR)
and transmitted (IT) intensities of an incoming plane-wave (I0)
by a multilayer system (see figure 1(b)). Such a structure can

be analytically described using a transfer matrix (see footnote
6):

=
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

I
I

R R R

T T T
I , 1R

T

EBID ITO glass

EBID ITO glass
0 ( )

where R and T are reflection and transmission matrices
describing propagation and multiple reflection of light within
the EBID layer, the ITO layer and the glass substrate,
respectively. Each matrix contains information about the
geometrical (thickness d) and optical (permittivity ò) proper-
ties of the corresponding layer. The only unknowns in the
equation above are the real and imaginary part of  .EBID All
further parameters describing the ITO-on-glass substrate as
well as the EBID layer thicknesses are determined experi-
mentally. Consequently, the optical properties of the EBID
material can be retrieved from measurements of reflection
and transmission. Due to the sub-wavelength thickness,
the light within the EBID and the ITO layers
(R R T T, , andEBID ITO EBID ITO) must be described as coherent
[25] in the investigated spectral range. In contrast, the glass
substrate is two orders of magnitude thicker than λ.
Therefore, and due to the used light source, light propagation
across the entire sample requires a semi-coherent description
[26]. Furthermore, according to equation (1) the measured
values IR and IT have to be normalized with respect to the
incident intensity I .I To this end, the reflection from and the
transmission through the ITO-on-glass substrate was mea-
sured and the theoretical reflectance and transmittance
coefficients were calculated (see footnote 6).

Though the calculation of the sample’s reflectance and
transmittance is straightforward if the complex permittivity of
the EBID layer is known, the inverse problem is not. In
addition, there are several distinct variations of EBID which
result in the same reflectance and transmittance of the sample.
Therefore, this inverse problem was tackled using a brute
force search, i.e., calculating the reflectance and transmittance
of the sample for several thousand possible complex values of
EBID for each wavelength and comparing them with the
experimental results. Thereby, all local minima in the two-
dimensional permittivity-space corresponding to the respec-
tive smallest deviation from the measured spectra were
identified. By subsequent refining of the region around the
minima, several steady solutions of EBID(λ) were found.
However, there is only one physical solution which has to be
determined. Accordingly, all dispersions which exhibit a
constant increase of the real part of the refractive index
( l =n constdRe d[ ] where =n ) in the whole investi-
gated spectral range are excluded. Such solutions have
unrealistically high values and appear repeatedly while
extending the plane of possible solutions (see footnote 6). In
contrast, the only dispersion which does not follow this ten-
dency has values in a reasonable range and meaningfully
reflects the inner structure of the EBID composite.
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4. Results and discussion

Figure 2(a) shows the experimental reflectance and trans-
mittance data of the EBID–ITO–glass system for different
deposit thicknesses. All reflectance spectra exhibit distribu-
tions with a maximum value observed at around 620 nm,
which slightly red-shifts for increasing layer thickness.
Likewise, the transmittance spectra feature minima at around
550 nm and also show the expected decrease in transmittance
for thicker pads. The corresponding real and imaginary parts
of the retrieved permittivity are presented in figure 2(b) (for
the sake of clarity, the measurement noise is removed by
fitting the retrieved real and imaginary parts of EBID(λ) with
polynomial functions) and show a clear systematic depen-
dence on the thickness of the EBID pads. The real part of
EBID decreases when decreasing deposit thickness,
approaching even metallic behaviour for the thinnest pad. In
contrast, the imaginary part increases with decreasing thick-
ness and moves to form a broad peak centred at around

650 nm. This tendency implies that the EBID composite
behaves more and more dielectrically for thicker deposits.

This observation is consistent with a chemisorption of the
gold-containing precursor molecules onto the sample surface
together with possibly decreasing vapour pressure over the
long deposition times [19, 24]. As mentioned, the concave
shape of the pads implies a mass-transport-limited deposition
regime [22] in which excess electrons start to dissociate
residual gases—mainly hydrocarbons present in the vacuum
chamber. For typical vacuum pressures around 10−6 hPa, still
a large number of molecules sufficient to form one monolayer
per second impinges onto the substrate only from the residual
gases [19] and possibly due to a longer resident time of some
precursor-gas ligands at the irradiated spot [21]. Thereby,
after the depletion of the chemisorbed initial layer, the
codeposition of carbon, oxygen and hydrogen becomes
dominant and increases the relative carbon content in the
thicker pads. For a long deposition time, this effect becomes
particularly important if the precursor vapour pressure
decreases with time. Thus, the carbon content of the deposits

Figure 2. (a) Experimental reflectance and transmittance spectra of EBID nanopads of thicknesses between 15 nm and 50 nm. (b) Retrieved
permittivity as a function of the pad thickness. For the sake of clarity, the measurement noise is removed by fitting the retrieved real and
imaginary parts of EBID(λ) with a polynomial function. The green curve of the thinnest deposit is expected to approximate the best material
properties of nanostructures, fabricated with EBID.
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rises along with the deposition time and with the deposit
thickness [24]. As a consequence, properties of the EBID
composite can be tuned by the density of the gold inclusions,
from strongly dielectric to slightly metallic optical behaviour.

In that respect, the permittivity of the thinnest pad is
expected to correspond to the material properties of nanos-
tructures which can be fabricated using EBID. Fine structures
(e.g. pillars or needles) are fabricated optimally with a dwell
time even up to 720 μs, initiating local heating, while staying
in the mass-transport-limited deposition regime. Furthermore,
the slender geometry, together with the overall short deposi-
tion time, supports the heating effect, which ensures a rela-
tively high content of gold around 28 at% [10].

Concerning the spectral characteristic of the retrieved
permittivity, the prominent resonance in Im EBID[ ] at around
650 nm can be attributed to the dipole resonance of the gold
nanoparticles within the carbonaceous matrix. The mean
particle diameter of the singly crystalline particles varies
around 4 nm ranging approximately from 2 nm to 7–8 nm with
a decreasing number of larger particles [10, 27]. Corre-
spondingly, figure 3 shows Mie cross-sections of absorption
(blue line) and of scattering (brown line) for isolated spherical
gold particles of a mean diameter of 4 nm with a lognormal
size distribution of 50% standard deviation under plane-wave
illumination (see footnote 6). The EBID matrix is approxi-
mated by non-absorbing diamond [28] (solid line) while gold
properties are taken from [29]. As expected, the Mie cross-
sections are dominated by an absorptive dipole resonance
around 630 nm, which corresponds to the absorption proper-
ties retrieved for the EBID matrix. In this size regime the shift
of the resonance position due to the nanoparticle size dis-
tribution is negligible. Thus, the Mie resonance is compara-
tively narrow, indicating that the broadening of the
metamaterial resonance is due to further loss mechanisms
besides the effect of the size distribution and the intrinsic
absorption of the gold inclusions. In that respect, absorption of

the carbonaceous matrix as well as interaction between the
particles, which are not included in the classical Mie
approach, play a significant role. Careful analytical con-
siderations [30] show that tiny losses of the matrix will not
only slightly red-shift the peak position but also cause strong
broadening of the resonance. Therefore, losses of the carbo-
naceous matrix, especially for the thicker deposits, are
responsible for the very broad resonance of in Im .EBID[ ]
Based on these results, description of EBID(λ) using an
effective medium approach based on dipoles in a dielectric
environment seems to be promising. Considering the inner
structure of the EBID material (randomly distributed metallic
nanocrystals of deep sub-wavelength dimensions within a
dielectric matrix), the Maxwell–Garnett theory [31] con-
stitutes the obvious choice. For that purpose the matrix
material is described as amorphous carbon [32] to account for
the matrix loss, and gold properties are taken again from [29].
Since the actual value of the volume filling factor of gold in
the composite is not known, it can therefore act as tuning
factor. Figure 4 shows the comparison between the retrieved
permittivity of the thinnest pad and the Maxwell–Garnett
effective media for three different values of filling factor:
15%, 20%, 25%. None of the possible combinations can
reproduce the retrieved EBID(λ). Neither tuning of the filling
factor nor substitution of the material properties of gold and
the carbonaceous matrix (including absorption) from other
material databases significantly changes the output of the
Maxwell–Garnett calculations. This indicates that the EBID
composite does not meet the Maxwell–Garnett conditions
[17, 31]. Indeed, the particles can be safely described within
the quasistatic approximation; the absorptive dipole-type
resonance fits well to the Maxwell–Garnett approach con-
sidering pure dipole–dipole interaction under the assumption
of negligible scattering. However, well separation of the
particles, required by the Maxwell–Garnett cannot be taken
for granted. The close spacing between the gold inclusions

Figure 3. Mie scattering and absorption cross-sections of isolated
gold particles embedded in diamond environment under plane-wave
excitation. The particles have a mean diameter of 4 nm with a
lognormal size distribution of 50% standard deviation.

Figure 4. Comparison of the retrieved permittivity of the EBID
material (green) with the Maxwell–Garnett effective medium theory
for three different volume filling fractions of 15%, 20% and 25%.
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will presumably cause both, not only near-field interactions
[17], but also local electron tunnelling through the carbonac-
eous matrix. As proven for the electrical applications of EBID
materials, the gold nanocrystals are not electrically isolated
within the carbonaceous matrix, but instead, electron trans-
port, due to thermally assisted tunneling of electrons, takes
place [13]. Furthermore, the mass-limited deposition regime
and hence the varying amount of co-deposited carbon influ-
ences the local particle density. An appropriate choice for the
extension of Maxwell–Garnett seems to be the introduction of
self-consistency, and thereby the iterative correction of the
properties of the carbonaceous matrix by the effective per-
mittivity itself [33]. In addition, the formation effect of dif-
ferently shaped particle aggregates and their influence of
higher order multipolar contributions need to be accounted for
as well [17, 34]. However, considering all these effects
together and due to the lack of knowledge concerning the
optical properties of the carbonaceous matrix, a consistent
effective material approach relying on only few and physically
meaningful parameters still represents a significant challenge.

5. Conclusions

In summary, the dielectric function of an EBID material
consisting of single-crystalline gold particles dispersed in a
carbonaceous matrix is studied experimentally. The retrieved
effective permittivities show a systematic dependence on the
layer thickness and, thus, the particle density within the
deposit. The effective permittivity for the highest metal con-
tent represents the best approximation of the material prop-
erties of EBID nanostructures. While the prominent
absorption feature present in the retrieved imaginary parts of
the EBID permittivities could be attributed to the dipole
resonances of the embedded gold nanoparticles via Mie cal-
culations, the optical properties of the material cannot be
described by using a standard Maxwell–Garnett approach.
Remarkably, this material also shows a very interesting
optical behaviour at wavelengths around 450 nm where the
real part of its permittivity exhibits a zero-crossing, which
might require more attention. While the presented study is
based on Me2Au(acac) as an exemplary gas precursor, the
discussed method can be applied to any type of EBID-based
metamaterial fabricated using metal-organic precursors.
Thereby, the numerical and experimental study of complex
nanostructures made of EBID metamaterials can be
envisaged.
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