218 research outputs found

    Setting Up the Speech Production Network: How Oscillations Contribute to Lateralized Information Routing

    Get PDF
    Speech production involves widely distributed brain regions. This MEG study focuses on the spectro-temporal dynamics that contribute to the setup of this network. In 21 participants performing a cue-target reading paradigm, we analyzed local oscillations during preparation for overt and covert reading in the time-frequency domain and localized sources using beamforming. Network dynamics were studied by comparing different dynamic causal models of beta phase coupling in and between hemispheres. While a broadband low frequency effect was found for any task preparation in bilateral prefrontal cortices, preparation for overt speech production was specifically associated with left-lateralized alpha and beta suppression in temporal cortices and beta suppression in motor-related brain regions. Beta phase coupling in the entire speech production network was modulated by anticipation of overt reading. We propose that the processes underlying the setup of the speech production network connect relevant brain regions by means of beta synchronization and prepare the network for left-lateralized information routing by suppression of inhibitory alpha and beta oscillations

    Comprehensive Flow Cytometric Characterization of Bronchoalveolar Lavage Cells Indicates Comparable Phenotypes Between Asthmatic and Healthy Horses But Functional Lymphocyte Differences

    Get PDF
    Equine asthma (EA) is a highly relevant disease, estimated to affect up to 20% of all horses, and compares to human asthma. The pathogenesis of EA is most likely immune-mediated, yet incompletely understood. To study the immune response in the affected lower airways, mixed leukocytes were acquired through bronchoalveolar lavage (BAL) and the cell populations were analyzed on a single-cell basis by flow cytometry (FC). Samples of 38 horses grouped as respiratory healthy or affected by mild to moderate (mEA) or severe EA (sEA) according to their history, clinical signs, and BAL cytology were analyzed. Using FC, BAL cells and PBMC were comprehensively characterized by cell surface markers ex vivo. An increased percentage of DH24A+ polymorphonuclear cells, and decreased percentages of CD14+ macrophages were detected in BAL from horses with sEA compared to healthy horses or horses with mEA, while lymphocyte proportions were similar between all groups. Independently of EA, macrophages in BAL were CD14+CD16+, which contrasts the majority of CD14+CD16- classical monocytes in PBMC. Percentages of CD16-expressing BAL macrophages were reduced in BAL from horses with sEA compared to healthy horses. While PBMC lymphocytes predominantly contain CD4+ T cells, B cells and few CD8+ T cells, BAL lymphocytes comprised mainly CD8+ T cells, fewer CD4+ T cells and hardly any B cells. These lymphocyte subsets' distributions were similar between all groups. After PMA/ionomycin stimulation in vitro, lymphocyte activation (CD154 and T helper cell cytokine expression) was analyzed in BAL cells of 26 of the horses and group differences were observed (p=0.01-0.11). Compared to healthy horses' BAL, CD154+ lymphocytes from horses with mEA, and CD4+IL-17A+ lymphocytes from horses with sEA were increased in frequency. Activated CD4+ T helper cells were more frequent in asthmatics' (mEA, sEA) compared to healthy horses' PBMC lymphocytes. In summary, FC analysis of BAL cells identified increased polymorphonuclear cells frequencies in sEA as established, while macrophage percentages were mildly reduced, and lymphocyte populations remained unaffected by EA. Cytokine production differences of BAL lymphocytes from horses with sEA compared to healthy horses' cells point towards a functional difference, namely increased local type 3 responses in sEA

    Distribution pattern following systemic mesenchymal stem cell injection depends on the age of the recipient and neuronal health

    Get PDF
    BACKGROUND: Mesenchymal stem cells (MSCs) show therapeutic efficacy in many different age-related degenerative diseases, including Alzheimer's disease. Very little is currently known about whether or not aging impacts the transplantation efficiency of MSCs. METHODS: In this study, we investigated the distribution of intravenously transplanted syngeneic MSCs derived from young and aged mice into young, aged, and transgenic APP/PS1 Alzheimer's disease mice. MSCs from male donors were transplanted into female mice and their distribution pattern was monitored by PCR using Y-chromosome specific probes. Biodistribution of transplanted MSCs in the brains of APP/PS1 mice was additionally confirmed by immunofluorescence and confocal microscopy. RESULTS: Four weeks after transplantation into young mice, young MSCs were found in the lung, axillary lymph nodes, blood, kidney, bone marrow, spleen, liver, heart, and brain cortex. In contrast, young MSCs that were transplanted into aged mice were only found in the brain cortex. In both young and aged mouse recipients, transplantation of aged MSCs showed biodistribution only in the blood and spleen. Although young transplanted MSCs only showed neuronal distribution in the brain cortex in young mice, they exhibited a wide neuronal distribution pattern in the brains of APP/PS1 mice and were found in the cortex, cerebellum, hippocampus, olfactory bulb, and brainstem. The immunofluorescent signal of both transplanted MSCs and resident microglia was robust in the brains of APP/PS1 mice. Monocyte chemoattractant-1 levels were lowest in the brain cortex of young mice and were significantly increased in APP/PS1 mice. Within the hippocampus, monocyte chemoattractant-1 levels were significantly higher in aged mice compared with younger and APP/PS1 mice. CONCLUSIONS: We demonstrate in vivo that MSC biodistribution post transplantation is detrimentally affected by aging and neuronal health. Aging of both the recipient and the donor MSCs used attenuates transplantation efficiency. Clinically, our data would suggest that aged MSCs should not be used for transplantation and that transplantation of MSCs into aged patients will be less efficacious

    Assessment of treatment response in cardiac sarcoidosis based on myocardial 18^{18}F-FDG uptake

    Get PDF
    OBJECTIVE Immunosuppressive therapy for cardiac sarcoidosis (CS) still largely consists of corticosteroid monotherapy. However, high relapse rates after tapering and insufficient efficacy are significant problems. The objective of this study was to investigate the efficacy and safety of non-biological and biological disease-modifying anti-rheumatic drugs (nb/bDMARDs) considering control of myocardial inflammation assessed by 18^{18}F-fluorodeoxyglucose positron emission tomography/computed tomography (18^{18}F-FDG PET/CT) of the heart. METHODS We conducted a retrospective analysis of treatment response to nb/bDMARDs of all CS patients seen in the sarcoidosis center of the University Hospital Zurich between January 2016 and December 2020. RESULTS We identified 50 patients with CS. Forty-five patients with at least one follow-up PET/CT scan were followed up for a mean of 20.5 ± 12.8 months. Most of the patients were treated with prednisone and concomitant nb/bDMARDs. At the first follow-up PET/CT scan after approximately 6.7 ± 3 months, only adalimumab showed a significant reduction in cardiac metabolic activity. Furthermore, comparing all serial follow-up PET/CT scans (143), tumor necrosis factor inhibitor (TNFi)-based therapies showed statistically significant better suppression of myocardial 18^{18}F-FDG uptake compared to other treatment regimens. On the last follow-up, most adalimumab-treated patients were inactive (n = 15, 48%) or remitting (n = 11, 35%), and only five patients (16%) were progressive. TNFi was safe even in patients with severely reduced left ventricular ejection fraction (LVEF), and a significant improvement in LVEF under TNFi treatment was observed. CONCLUSION TNFi shows better control of myocardial inflammation compared to nbDMARDs and corticosteroid monotherapies in patients with CS. TNFi was efficient and safe even in patients with severely reduced LVEF

    Role of the Two Component Signal Transduction System CpxAR in Conferring Cefepime and Chloramphenicol Resistance in Klebsiella pneumoniae NTUH-K2044

    Get PDF
    Background: Klebsiella pneumoniae is a Gram-negative, non-motile, facultative anaerobe belonging to the Enterobacteriaceae family of the c-Proteobacteria class in the phylum Proteobacteria. Multidrug resistant K. pneumoniae have caused major therapeutic problems worldwide due to emergence of extended-spectrum b-lactamase producing strains. Twocomponent systems serve as a basic stimulus-response coupling mechanism to allow organisms to sense and respond to changes in many different environmental conditions including antibiotic stress. Principal Findings: In the present study, we investigated the role of an uncharacterized cpxAR operon in bacterial physiology and antimicrobial resistance by generating isogenic mutant (DcpxAR) deficient in the CpxA/CpxR component derived from the hyper mucoidal K1 strain K. pneumoniae NTUH-K2044. The behaviour of DcpxAR was determined under hostile conditions, reproducing stresses encountered in the gastrointestinal environment and deletion resulted in higher sensitivity to bile, osmotic and acid stresses. The DcpxAR was more susceptible to b-lactams and chloramphenicol than the wild-type strain, and complementation restored the altered phenotypes. The relative change in expression of acrB, acrD, eefB efflux genes were decreased in cpxAR mutant as evidenced by qRT-PCR. Comparison of outer membrane protein profiles indicated a conspicuous difference in the knock out background. Gel shift assays demonstrated direct binding of CpxR KP to promoter region of ompC KP in a concentration dependent manner

    Assessment of treatment response in cardiac sarcoidosis based on myocardial 18F-FDG uptake

    Get PDF
    ObjectiveImmunosuppressive therapy for cardiac sarcoidosis (CS) still largely consists of corticosteroid monotherapy. However, high relapse rates after tapering and insufficient efficacy are significant problems. The objective of this study was to investigate the efficacy and safety of non-biological and biological disease-modifying anti-rheumatic drugs (nb/bDMARDs) considering control of myocardial inflammation assessed by 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) of the heart.MethodsWe conducted a retrospective analysis of treatment response to nb/bDMARDs of all CS patients seen in the sarcoidosis center of the University Hospital Zurich between January 2016 and December 2020.ResultsWe identified 50 patients with CS. Forty-five patients with at least one follow-up PET/CT scan were followed up for a mean of 20.5 ± 12.8 months. Most of the patients were treated with prednisone and concomitant nb/bDMARDs. At the first follow-up PET/CT scan after approximately 6.7 ± 3 months, only adalimumab showed a significant reduction in cardiac metabolic activity. Furthermore, comparing all serial follow-up PET/CT scans (143), tumor necrosis factor inhibitor (TNFi)-based therapies showed statistically significant better suppression of myocardial 18F-FDG uptake compared to other treatment regimens. On the last follow-up, most adalimumab-treated patients were inactive (n = 15, 48%) or remitting (n = 11, 35%), and only five patients (16%) were progressive. TNFi was safe even in patients with severely reduced left ventricular ejection fraction (LVEF), and a significant improvement in LVEF under TNFi treatment was observed.ConclusionTNFi shows better control of myocardial inflammation compared to nbDMARDs and corticosteroid monotherapies in patients with CS. TNFi was efficient and safe even in patients with severely reduced LVEF

    Expression of the Lantibiotic Mersacidin in Bacillus amyloliquefaciens FZB42

    Get PDF
    Lantibiotics are small peptide antibiotics that contain the characteristic thioether amino acids lanthionine and methyllanthionine. As ribosomally synthesized peptides, lantibiotics possess biosynthetic gene clusters which contain the structural gene (lanA) as well as the other genes which are involved in lantibiotic modification (lanM, lanB, lanC, lanP), regulation (lanR, lanK), export (lanT(P)) and immunity (lanEFG). The lantibiotic mersacidin is produced by Bacillus sp. HIL Y-85,54728, which is not naturally competent

    Abnormal Wnt and PI3Kinase Signaling in the Malformed Intestine of lama5 Deficient Mice

    Get PDF
    Laminins are major constituents of basement membranes and are essential for tissue homeostasis. Laminin-511 is highly expressed in the intestine and its absence causes severe malformation of the intestine and embryonic lethality. To understand the mechanistic role of laminin-511 in tissue homeostasis, we used RNA profiling of embryonic intestinal tissue of lama5 knockout mice and identified a lama5 specific gene expression signature. By combining cell culture experiments with mediated knockdown approaches, we provide a mechanistic link between laminin α5 gene deficiency and the physiological phenotype. We show that laminin α5 plays a crucial role in both epithelial and mesenchymal cell behavior by inhibiting Wnt and activating PI3K signaling. We conclude that conflicting signals are elicited in the absence of lama5, which alter cell adhesion, migration as well as epithelial and muscle differentiation. Conversely, adhesion to laminin-511 may serve as a potent regulator of known interconnected PI3K/Akt and Wnt signaling pathways. Thus deregulated adhesion to laminin-511 may be instrumental in diseases such as human pathologies of the gut where laminin-511 is abnormally expressed as it is shown here
    corecore