75 research outputs found

    Development of multisensory spatial integration and perception in humans

    Get PDF
    Previous studies have shown that adults respond faster and more reliably to bimodal compared to unimodal localization cues. The current study investigated for the first time the development of audiovisual (A‐V) integration in spatial localization behavior in infants between 1 and 10 months of age. We observed infants’ head and eye movements in response to auditory, visual, or both kinds of stimuli presented either 25° or 45° to the right or left of midline. Infants under 8 months of age intermittently showed response latencies significantly faster toward audiovisual targets than toward either auditory or visual targets alone They did so, however, without exhibiting a reliable violation of the Race Model, suggesting that probability summation alone could explain the faster bimodal response. In contrast, infants between 8 and 10 months of age exhibited bimodal response latencies significantly faster than unimodal latencies for both eccentricity conditions and their latencies violated the Race Model at 25° eccentricity. In addition to this main finding, we found age‐dependent eccentricity and modality effects on response latencies. Together, these findings suggest that audiovisual integration emerges late in the first year of life and are consistent with neurophysiological findings from multisensory sites in the superior colliculus of infant monkeys showing that multisensory enhancement of responsiveness is not present at birth but emerges later in life

    Cationic Complexes of Hydrogen with Helium

    Get PDF
    High‐resolution mass spectra of helium nanodroplets doped with hydrogen or deuterium reveal that copious amounts of helium can be bound to H+, H2+, H3+, and larger hydrogen‐cluster ions. All conceivable HenHx+ stoichiometries are identified if their mass is below the limit of ≈120 u set by the resolution of the spectrometer. Anomalies in the ion yields of HenHx+ for x=1, 2, or 3, and n≀30 reveal particularly stable cluster ions. Our results for HenH1+ are consistent with conclusions drawn from previous experimental and theoretical studies which were limited to smaller cluster ions. The HenH3+ series exhibits a pronounced anomaly at n=12 which was outside the reliable range of earlier experiments. Contrary to findings reported for other diatomic dopant molecules, the monomer ion (i.e. H2+) retains helium with much greater efficiency than hydrogen‐cluster ions

    Development of multisensory spatial integration and perception in humans

    Get PDF
    Previous studies have shown that adults respond faster and more reliably to bimodal compared to unimodal localization cues. The current study investigated for the first time the development of audiovisual (A‐V) integration in spatial localization behavior in infants between 1 and 10 months of age. We observed infants’ head and eye movements in response to auditory, visual, or both kinds of stimuli presented either 25° or 45° to the right or left of midline. Infants under 8 months of age intermittently showed response latencies significantly faster toward audiovisual targets than toward either auditory or visual targets alone They did so, however, without exhibiting a reliable violation of the Race Model, suggesting that probability summation alone could explain the faster bimodal response. In contrast, infants between 8 and 10 months of age exhibited bimodal response latencies significantly faster than unimodal latencies for both eccentricity conditions and their latencies violated the Race Model at 25° eccentricity. In addition to this main finding, we found age‐dependent eccentricity and modality effects on response latencies. Together, these findings suggest that audiovisual integration emerges late in the first year of life and are consistent with neurophysiological findings from multisensory sites in the superior colliculus of infant monkeys showing that multisensory enhancement of responsiveness is not present at birth but emerges later in life

    Solvation of Na+, K+ and their dimers in helium

    Get PDF
    Helium atoms bind strongly to alkali cations which, when embedded in liquid helium, form so‐called snowballs. Calculations suggest that helium atoms in the first solvation layer of these snowballs form rigid structures and that their number (n) is well defined, especially for the lighter alkalis. However, experiments have so far failed to accurately determine values of n. We present high‐resolution mass spectra of Na+Hen, K+Hen, Na2+Hen and K2+Hen, formed by electron ionization of doped helium droplets; the data allow for a critical comparison with several theoretical studies. For sodium and potassium monomers the spectra indicate that the value of n is slightly smaller than calculated. Na2+Hen displays two distinct anomalies at n=2 and n=6, in agreement with theory; dissociation energies derived from experiment closely track theoretical values. K2+Hen distributions are fairly featureless, which also agrees with predictions

    Gaze bias both reflects and influences preference

    Get PDF
    Emotions operate along the dimension of approach and aversion, and it is reasonable to assume that orienting behavior is intrinsically linked to emotionally involved processes such as preference decisions. Here we describe a gaze 'cascade effect' that was present when human observers were shown pairs of human faces and instructed to decide which face was more attractive. Their gaze was initially distributed evenly between the two stimuli, but then gradually shifted toward the face that they eventually chose. Gaze bias was significantly weaker in a face shape discrimination task. In a second series of experiments, manipulation of gaze duration, but not exposure duration alone, biased observers' preference decisions. We thus conclude that gaze is actively involved in preference formation. The gaze cascade effect was also present when participants compared abstract, unfamiliar shapes for attractiveness, suggesting that orienting and preference for objects in general are intrinsically linked in a positive feedback loop leading to the conscious choice

    Adsorption of Hydrogen on Neutral and Charged Fullerene: Experiment and Theory

    Get PDF
    Helium droplets are doped with fullerenes (either C60 or C70) and hydrogen (H2 or D2) and investigated by high-resolution mass spectrometry. In addition to pure helium and hydrogen cluster ions, hydrogen-fullerene complexes are observed upon electron ionization. The composition of the main ion series is (H2)nHCm+ where m = 60 or 70. Another series of even-numbered ions, (H2)nCm+, is slightly weaker in stark contrast to pure hydrogen cluster ions for which the even-numbered series (H2)n+ is barely detectable. The ion series (H2)nHCm+ and (H2)nCm+ exhibit abrupt drops in ion abundance at n = 32 for C60 and 37 for C70, indicating formation of an energetically favorable commensurate phase, with each face of the fullerene ion being covered by one adsorbate molecule. However, the first solvation layer is not complete until a total of 49 H2 are adsorbed on C60+; the corresponding value for C70+ is 51. Surprisingly, these values do not exhibit a hydrogen-deuterium isotope effect even though the isotope effect for H2/D2 adsorbates on graphite exceeds 6%. We also observe doubly charged fullerene-deuterium clusters; they, too, exhibit abrupt drops in ion abundance at n = 32 and 37 for C60 and C70, respectively. The findings imply that the charge is localized on the fullerene, stabilizing the system against charge separation. Density functional calculations for C60-hydrogen complexes with up to five hydrogen atoms provide insight into the experimental findings and the structure of the ions. The binding energy of physisorbed H2 is 57 meV for H2C60+ and (H2)2C60+, and slightly above 70 meV for H2HC60+ and (H2)2HC60+. The lone hydrogen in the odd-numbered complexes is covalently bound atop a carbon atom but a large barrier of 1.69 eV impedes chemisorption of the H2 molecules. Calculations for neutral and doubly charged complexes are presented as well

    Methane Adsorption on Aggregates of Fullerenes: Site-Selective Storage Capacities and Adsorption Energies

    Get PDF
    Methane adsorption on positively charged aggregates of C60 is investigated by both mass spectrometry and computer simulations. Calculated adsorption energies of 118–281 meV are in the optimal range for high‐density storage of natural gas. Groove sites, dimple sites, and the first complete adsorption shells are identified experimentally and confirmed by molecular dynamics simulations, using a newly developed force field for methane–methane and fullerene–methane interaction. The effects of corrugation and curvature are discussed and compared with data for adsorption on graphite, graphene, and carbon nanotubes

    Structures, energetics, and dynamics of helium adsorbed on isolated fullerene ions

    Full text link
    Helium adsorbed on C60+ and C70+ exhibits phenomena akin to helium on graphite. Mass spectra suggest that commensurate layers form when all carbon hexagons and pentagons are occupied by one He each, but that the solvation shell does not close until 60 He atoms are adsorbed on C60+, or 62 on C70+. Molecular dynamics simulations of C 60Hen+ at 4 K show that the commensurate phase is solid. Helium added to C60He32+ will displace some atoms from pentagonal sites, leading to coexistence of a registered layer of immobile atoms interlaced with a nonregistered layer of mobile atomsThis work was supported by MICINN projects FIS2010-15127, ACI2008-0777, CTQ2010-17006, Consolider-Ingenio CSD2007-00010, CAM program NANOBIOMAGNET S2009/MAT1726, the Austrian Science Fund, Wien (FWF, projects P19073, L633, and I200 N29), the European Commission, Brussels (ITS-LEIF), and the European COST Action CM0702

    The submersion of sodium clusters in helium nanodroplets: Identification of the surface → interior transition

    Full text link
    The submersion of sodium clusters beyond a critical size in helium nanodroplets, which has recently been predicted on theoretical grounds, is demonstrated for the first time. Confirmation of a clear transition from a surface location, which occurs for alkali atoms and small clusters, to full immersion for larger clusters, is provided by identifying the threshold electron energy required to initiate Nan cluster ionization. On the basis of these measurements, a lower limit for the cluster size required for submersion, n ≄ 21, has been determined. This finding is consistent with the recent theoretical prediction

    The submersion of sodium clusters in helium nanodroplets: Identification of the surface → interior transition

    Get PDF
    The submersion of sodium clusters beyond a critical size in helium nanodroplets, which has recently been predicted on theoretical grounds, is demonstrated for the first time. Confirmation of a clear transition from a surface location, which occurs for alkali atoms and small clusters, to full immersion for larger clusters, is provided by identifying the threshold electron energy required to initiate Na n cluster ionization. On the basis of these measurements, a lower limit for the cluster size required for submersion, n ≄ 21, has been determined. This finding is consistent with the recent theoretical prediction
    • 

    corecore