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1Institut für Ionenphysik und Angewandte Physik, University of Innsbruck, Technikerstrasse 25,
A-6020 Innsbruck, Austria
2Department of Physics, University of New Hampshire, Durham, New Hampshire 03824, USA

(Received 29 November 2012; accepted 22 January 2013; published online 19 February 2013)

Helium droplets are doped with fullerenes (either C60 or C70) and hydrogen (H2 or D2) and inves-
tigated by high-resolution mass spectrometry. In addition to pure helium and hydrogen cluster ions,
hydrogen-fullerene complexes are observed upon electron ionization. The composition of the main
ion series is (H2)nHCm

+ where m = 60 or 70. Another series of even-numbered ions, (H2)nCm
+,

is slightly weaker in stark contrast to pure hydrogen cluster ions for which the even-numbered se-
ries (H2)n

+ is barely detectable. The ion series (H2)nHCm
+ and (H2)nCm

+ exhibit abrupt drops in
ion abundance at n = 32 for C60 and 37 for C70, indicating formation of an energetically favorable
commensurate phase, with each face of the fullerene ion being covered by one adsorbate molecule.
However, the first solvation layer is not complete until a total of 49 H2 are adsorbed on C60

+; the
corresponding value for C70

+ is 51. Surprisingly, these values do not exhibit a hydrogen-deuterium
isotope effect even though the isotope effect for H2/D2 adsorbates on graphite exceeds 6%. We also
observe doubly charged fullerene-deuterium clusters; they, too, exhibit abrupt drops in ion abun-
dance at n = 32 and 37 for C60 and C70, respectively. The findings imply that the charge is localized
on the fullerene, stabilizing the system against charge separation. Density functional calculations
for C60-hydrogen complexes with up to five hydrogen atoms provide insight into the experimental
findings and the structure of the ions. The binding energy of physisorbed H2 is 57 meV for H2C60

+

and (H2)2C60
+, and slightly above 70 meV for H2HC60

+ and (H2)2HC60
+. The lone hydrogen in

the odd-numbered complexes is covalently bound atop a carbon atom but a large barrier of 1.69 eV
impedes chemisorption of the H2 molecules. Calculations for neutral and doubly charged complexes
are presented as well. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790403]

I. INTRODUCTION

The adsorption of permanent gases on graphite,
graphene, nanotubes, layers of fullerenes, and other graphitic
materials has attracted considerable interest. One factor that
drives research in this field is the need to develop the foun-
dations for a hydrogen economy.1 The use of hydrogen as an
energy carrier requires the development of methods to store
hydrogen in low-weight containers at high density and low
cost, especially if hydrogen is to be used for transportation.2

Storage of hydrogen gas in liquid form at high pressures and
cryogenic temperatures is not likely to meet the performance
targets of the US Department of Energy, and invokes safety
hazards.3 Better alternatives may be offered by absorption of
H2 to form metal hydrides, by chemical reactions, or by ad-
sorption in porous, light-weight materials with large specific
surface areas.3, 4 Although the physisorption energy of H2 in
pristine carbon-based materials, such as graphene, nanotubes,
or fullerenes is only around 50 meV, the introduction of de-
fects, dopants, or charges may raise adsorption energies suf-
ficiently to allow for efficient storage at moderate pressures
near ambient temperatures.5, 6

a)paul.scheier@uibk.ac.at and olof.echt@unh.edu.

Furthermore, hydrogen physisorbed on graphite or
graphite-like materials exhibits strong corrugation effects,
i.e., the interaction between the adsorbate and the substrate
is much stronger than the interaction between adsorbate
molecules.7 This favors the formation of ordered layers which
are commensurate with the arrangement of the carbon atoms
in the honeycomb lattice of graphite, within certain ranges
of coverage and temperature. H2 molecules on graphite form
a relatively simple phase diagram (coverage plotted versus
temperature), with the appearance of just one commensurate
phase, namely, the

√
3×√

3 phase in which 1/3 of all sites (all
second-nearest neighbor sites) over the centers of the hexago-
nal carbon rings are occupied.8 The same phase occurs for
D2 on graphite, but the lower zero-point energy of D2 re-
sults in a much richer phase diagram; several other phases
can be distinguished with increasing coverage.9 The large iso-
tope effect also results in a significantly higher density when
the first monolayer is completed, namely, at 0.0987 D2/Å2

(or 1.55 times the coverage of the
√

3×√
3 phase) versus

0.0927 H2/Å2.
An intriguing question is the existence of related effects

for H2 and D2 adsorbed on free fullerenes. Is the corruga-
tion strong enough to favor an arrangement where each carbon
ring is occupied by exactly one molecule? Are the molecules

0021-9606/2013/138(7)/074311/13/$30.00 © 2013 American Institute of Physics138, 074311-1
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small enough to form a commensurate layer when each facet
of the fullerene is occupied by one molecule, i.e., when 32
molecules are adsorbed on C60? This phase would have a
hydrogen-to-carbon ratio three times that of the

√
3×√

3
phase on graphite; it may be viewed as the 1 × 1 phase
which does not form on graphite because H2, He, and other
physisorbed atoms or molecules are too large. The first com-
plete monolayer on C60 may even accommodate additional
molecules which would displace the other molecules from
their registered sites.10, 11 The number of molecules in this in-
commensurate solvation layer could be subject to an isotope
effect similar to the ≈6% isotope effect for the H2/D2 mono-
layer on graphite; the D2 solvation shell could thus accommo-
date two or three molecules more than the H2 solvation shell.

In a recent letter, we presented first evidence for the for-
mation of positively charged H2-fullerene physisorption com-
plexes and discussed their possible presence in the interstellar
medium.12–15 Hydrogen is the most abundant element in the
universe; 92% of all atoms in the universe are hydrogen.16

Kroto et al.17 had already conjectured that fullerenes or their
derivatives may be major constituents of circumstellar shells
with high carbon content or interstellar dust, catalyze re-
actions of new molecules in space, and be the carrier of
the diffuse interstellar bands (DIBs), but early mass spec-
trometric evidence for extraterrestrial fullerenes in the car-
bonaceous impact residue in a crater on a spacecraft18 or
spectroscopic identification of fullerene cations in interstel-
lar absorption bands19 remained ambivalent.20, 21 Hydrogen
inhibits the formation of fullerenes in an arc discharge22 but
very high (≥3500 K) temperatures may lead to fullerenes
even if hydrogen is present.23 Interstellar fullerenes may
also originate from the envelopes surrounding mass-losing,
hydrogen-deficient carbon-rich stars such as R Coronae Bo-
realis (RCB).20

Recently, conclusive spectroscopic evidence for the ex-
istence of cold neutral fullerenes has been identified in IR
spectra recorded by the Spitzer Space telescope in planetary
nebulae.24 Remarkably, they are estimated to represent a few
percent of the total available cosmic carbon in those regions.
Since then, neutral fullerenes have also been detected in a pro-
toplanetary nebula,25 the interstellar medium,26 around RCB
stars,27 young stellar objects, and a pre-main-sequence star.28

With an estimated energy of 50 meV for physisorption of H2

on fullerenes, H2 concentrations up to ≈104 cm−3 and tem-
peratures as low as 10 K in interstellar clouds,29 we con-
cluded that neutral or charged fullerene-hydrogen complexes
are likely to occur in the interstellar medium, at least in the
colder regions of dense molecular clouds.12 The effect of one
or more physisorbed H2 molecules on the absorption spectra
would have important ramifications for their possible contri-
bution to the diffuse interstellar bands. The number of these
bands, discovered 90 years ago by Heger as broad absorption
features superimposed on the interstellar extinction curve30

now exceeds 40031 but they have not yet found a satisfactory,
coherent explanation.32

In our recent letter,12 we discussed the appearance of two
ion series, namely, “even-numbered” (H2)nCm

+ and “odd-
numbered” (H2)nHCm

+ where m = 60 or 70. Both ion se-
ries exhibit an abrupt drop in the abundance at n = 32 and

37 for C60 and C70, respectively, which we attributed to an
enhanced stability of the commensurate phase of the adsor-
bate, when each carbon ring is occupied by one hydrogen
molecule. In our current work, we present additional exper-
imental findings, together with ab initio calculations. In par-
ticular, we offer evidence for completion of a first hydrogen
monolayer well beyond the completion of the commensurate
phase, with no detectable isotope effect. Moreover, we show
that doubly charged ions (H2)nHCm

2+ also form a commensu-
rate phase. Our ab initio calculations reveal the structure and
energetics of small, neutral, and singly or doubly charged C60-
hydrogen complexes; they provide a rational for the relatively
large abundance of even-numbered (H2)nC60

+.

II. EXPERIMENT

Neutral helium nanodroplets are produced by expand-
ing helium (purity 99.9999%) from a stagnation pressure of
2 MPa through a 5 μm nozzle, cooled to about 8 K by a
closed-cycle refrigerator (Sumitomo Heavy Industries LTD,
model RDK-415D), into vacuum. The estimated average
number of helium atoms per droplet formed in the expan-
sion is of the order of 5 × 105; the droplets are superfluid
with a temperature of ≈0.37 K.33 The resulting supersonic
beam is skimmed by a 0.8 mm conical skimmer, located 8 mm
downstream from the nozzle. The skimmed beam traverses a
20-cm long differentially pumped pickup region into which
hydrogen (Messer Austria GmbH, specified purity 99.999%)
or deuterium (99.7% by weight) are introduced; the measured
partial pressure is typically a few times 10−3 Pa (uncorrected
gauge signal). A small amount of C60 (MER Corp., 99.9%) or
C70 (SES Research, 99%) is vaporized into the pickup region
from a crucible. The temperature of the fullerene source is ad-
justed to optimize the pickup of just one fullerene per helium
droplet.

After the pickup region, the doped helium droplets pass a
region in which they are ionized by electron impact at 70 eV.
Cations are accelerated to 40 eV into the extraction region of
a commercial time-of-flight mass spectrometer equipped with
a reflectron (Tofwerk AG, model HTOF); its mass resolution
is about �m/m = 1/5000. The base pressure in the mass spec-
trometer is 10−5 Pa. The ions are extracted at 90◦ into the
field-free region of the spectrometer by a pulsed extraction
voltage. At the end of the field-free region, they enter a two-
stage reflectron which reflects them towards a microchannel
plate detector operated in single ion counting mode. Addi-
tional experimental details have been described in Refs. 12
and 34.

III. DATA ANALYSIS: ION YIELD
VERSUS ION ABUNDANCE

Mass spectra are analyzed by determining the ion yield,
i.e., the amplitude of each mass peak, properly corrected for
background. For strong mass peaks that are well separated
from adjacent peaks we simply read the ion yield at its max-
imum, and in the valleys between adjacent peaks. For more
problematic peaks that have either poor statistics or adjacent
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peaks that are not well resolved, we apply nonlinear curve fit-
ting to determine the background-corrected peak amplitude.

In the present study, mass peaks usually contain signifi-
cant contributions from two or more different ions because of
the 13C isotope (mass 13.00335 u, natural abundance 1.07%).
In order to extract the abundance of, say, HxC70

+, one needs
to correct the measured ion yield for contributions from ions
with smaller x that contain one or more 13C (the presence of
deuterium, natural abundance 0.0115%, may be neglected).
The isotopically pure Hx

12C70
+ will form a mass peak at

1.008725x + 70 × 12 u, while Hx-1
13C12C69

+ (which for con-
venience we will write as Hx−1C70

+ (1−13C)) will appear
at 1.008725(x−1) + 69 × 12 + 13.00335 u, just 0.0054 u
lower. This mass difference is much smaller than the width
of the mass peak which measures ≈0.2 u (full-width-at-half-
maximum, FWHM) at a mass of 1000 u. The contributions
from these two ions will simply add, together with contribu-
tions from Hx−2C70

+ (2−13C), etc.
If the abundance Ax of all ions HxC70

+ (0−13C) were
known, the ion yield Yx at nominal mass x + 840 u would
follow from the relation

Yx =
x∑

i=0

PiAx−i , (1)

where Pi is the known probability of the C70 (i−13C) isotopo-
logue. If carbon were monoisotopic one would simply have
P0 = 1, P1 = P2 = . . . = 0, and Yx = Ax.

Figure 1 illustrates the relation between ion yield and
ion abundance. Panel (a) displays the abundance of HxC70

+

(0−13C), arbitrarily chosen with an odd-even alternation and
an abrupt drop beyond x = 9. For x = 1, 2, 3, 4, the abundance
was set to zero. Panel (b) displays the ion yield Yx calculated
from Eq. (1) and plotted versus mass, i.e., a histogram of the
mass spectrum that one would observe. The distinct isotope
pattern of C70 appears below 845 u. HxC70

+ ions appear at
845 u and above; the abundance anomalies (i.e., the odd-even
effect and the abrupt drop at x = 9, mass 849 u) are washed
out significantly in the mass spectrum.

If the ion abundance shown in Figure 1(a) would apply to
deuterated cluster ions DxC70

+ (0−13C), one would (with a
straightforward modification of Eq. (1)) expect a mass spec-
trum as shown in Figure 1(c). The odd-even alternation and
the abrupt drop beyond x = 9, mass 858 u, is much more rec-
ognizable in this spectrum. Experiments with deuterium are
clearly preferable to experiments with hydrogen.

For the actual data analysis, one needs to invert the pro-
cedure, i.e., one determines the ion abundance from the mea-
sured ion yield. Equation (1) is a convolution of A(x) with the
function P(x), thus one needs to deconvolute the measured ion
yield. In the more general case, for example, in a measure-
ment of (CH4)xC70

+, the probabilities Pi will also depend on
x and Eq. (1) is replaced by

Yx =
∑

Px,iAx−i . (2)

This is a matrix equation, Y = PA. One obtains the ion abun-
dances from the inverse of the matrix, A = P−1 Y. This is
the method that we chose for data analysis with P−1 being
replaced by the Moore-Penrose pseudoinverse.35

(a)

(b)

(c)

FIG. 1. Panel (a) An arbitrarily assumed distribution of isotopically pure
Hx

12C70
+ions. From this ion abundance one computes the ion yield, i.e.,

the mass spectrum that one would measure (panel (b)). Panel (c) shows the
simulated ion yield if, in panel (a), hydrogen were replaced with deuterium.

IV. THEORY

Energetics and geometries of neutral, singly and dou-
bly charged C60Hx with x between 1 and 5 were calculated
by means of density functional theory (DFT). Special at-
tention was paid to the physisorption of one or two hydro-
gen molecules on C60

+ or C60H+ ions. All structures were
fully optimized in order to account for the deformation of the
fullerene due to the presence of hydrogen. The calculations
were performed with two different density functionals within
the GAUSSIAN 09 program and a standard 6-31(d,p) basis
set.36 The PBE0 hybrid generalized gradient approximation
functional from Adamo and Barone,37 which is based on the
pure functional of Perdew et al.38 does not include long-range
van der Waals interactions (dispersion).39 It performs well,
however, where static polarization40 dominates and yielded
good results for the singly charged systems. In order to in-
clude dispersion, the hybrid functional ωB97X-D41 was used.
This functional accounts empirically for long-range effects
and has proven its suitability to describe weak interactions
such as hydrogen bonds and dipole induced non-covalent
bonds with good accuracy in many molecular systems.42
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(a)

(b)

(c)

FIG. 2. Sections of a mass spectrum of helium droplets doped with C60 and
D2. Ions DxC60

z+ (z = 1 or 2) are labeled by the value of x. Note the anomaly
in the ion yield of singly charged species at x = 65 in panel (a), the promi-
nence of Hen

+ and Dx
+(x odd) in panel (b), and the appearance of doubly

charged DxC60
2+ (panel (c)).

V. EXPERIMENTAL RESULTS

A. Mass spectra

We have recorded several mass spectra of helium droplets
doped with hydrogen or deuterium plus either C60 or C70.
Figure 2 displays sections of a spectrum obtained by elec-
tron ionization of droplets doped with C60 and D2; Fig-
ure 3 displays sections of a spectrum of droplets doped
with C70 and D2. Two prominent ion series appear in these
spectra below the fullerene mass, namely, Hen

+ and odd-
numbered Dx

+. Each helium cluster ion Hen
+ gives rise to

just one mass peak in the spectrum because helium is very
nearly monoisotopic; the natural abundance of 4He (mass
4.002603 u) is 99.999866%.43 Similarly, each Dx

+ ion gives
rise to one mass peak if one neglects the possible presence
of H2 impurities in the deuterium gas. In experiments carried
out with H2 instead of D2, the presence of deuterium (nat-
ural abundance 0.0115%, mass 2.01410 u43) may be safely
neglected. In the mass range displayed in Figs. 2(b) and 3(b),
the mass of Hen

+ is about 0.3 u below that of D2n−1
+. Even-

numbered Dx
+ which have a yield of a few percent relative to

(a)

(b)

(c)

FIG. 3. Similar to Figure 2 for helium droplets doped with C70 and D2; the
anomaly occurs at x = 75 (see the inset in panel (a)).

adjacent odd-numbered Dx
+ 44 are overwhelmed in the cur-

rent spectra by a series of impurity ions H2ODx
+ (x odd)

which occurs 0.112 u below the Dx
+ (x even) series.

Other prominent ions in the low-mass section of the
mass spectrum are singly charged fullerene fragments Cm

+

(m even) as small as C32
+ in the C60 spectrum, and C36

+ in the
C70 spectrum. Doubly charged fullerenes C60

2+ and C70
2+ ap-

pear prominently at mass-to-charge ratios 360 and 420 Thom-
son, respectively; their even-numbered fragments Cm

2+ can
be identified down to C50

2+. Each of these ions forms a
characteristic pattern of peaks due to contributions from iso-
topologues that contain 13C (natural abundance 1.07%, mass
13.003355 u). Most of these bare, singly or doubly charged
Cm

z+ ions (z = 1 or 2) probably result from direct ionization
of bare C60 or C70 that leaks from the pickup cell into the
ionizer. The intensity of these fragment ions relative to their
doubly charged parent ions is greatly diminished in recent ex-
periments with a modified setup that reduces the escape of
fullerene vapor from the pickup cell.

The bottom panels in Figs. 2 and 3 reveal another, weak
ion series which is assigned to odd-numbered doubly charged
DxCm

2+ (m = 60 or 70). Because of interference with other
ions, these ions can be unambiguously identified for only
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one isotopologue, namely, DxC60
2+ (0−13C) and Hx−1C70

2+

(1−13C) (i.e., Dx
12C60

2+ and Hx−1
13C12C69

2+, respectively).
The top panels in Figs. 2 and 3 reveal an intense ion se-

ries of the form DxCm
+ (m = 60 or 70). The yield of these

ion series drops abruptly beyond x = 65 and 75, respectively,
as shown in more detail in the insets where mass peaks of
odd-numbered, isotopically pure (0−13C) ions are labeled by
the value of x. The yield of even-numbered DxCm

+ (not la-
beled) is lower, but note that each mass peak contains con-
tributions from several cluster ions. For example, the mass
peak labeled x = 73 in Figure 3 contains contributions from
D73C70

+ (0−13C), some 30% from D72C70
+ (2−13C), and a

minor (≈1%) contribution from D71C70
+ (4−13C). Similarly,

the mass peak 1 u above the one labeled x = 73 is mostly
due to D73C70

+ (1−13C), but also contains contributions from
D72C70

+ (3−13C) and D71C70
+ (5−13C). The analysis of the

mass spectra, discussed in Sec. III, provides the ion abun-
dance, which refers to specific, isotopically pure ions such
as DxC70

+ (0−13C).

B. Ion abundance

The ion abundance extracted from mass spectra recorded
with D2 is presented in Figure 4 for C60 and C70 (panels a
and b, respectively), for singly charged odd-numbered, even-
numbered, and doubly charged odd-numbered ions. Here,
we have changed the notation for specifying the cluster size

(a)

(b)

FIG. 4. Ion abundances of (D2)nDCm
+, (D2)nCm

+, and (D2)nDCm
2+ ex-

tracted from mass spectra shown in Figs. 2 and 3 for m = 60 and 70, re-
spectively. Significant anomalies in the ion abundance are marked. The insets
display the ion abundances of (H2)nC60

+ and (H2)nC70
+.

to (D2)nCm
+ and (D2)nDCm

+ for even- and odd numbered
DxCm

+, respectively.
The odd-numbered series is more abundant than the even-

numbered series by about a factor two. For both ion series,
the abundance varies very smoothly with size n until it drops
abruptly by a factor two at (i.e., just beyond) n = 32 and
37 for C60 and C70, respectively. Another drop occurs at n
= 49 for C60 and 51 for C70. These drops in abundance, by
some 20%–30%, are significantly larger than the statistical
uncertainty of the data points which is less than the size of
the symbols. The same anomalies are observed in the ion
abundance of (H2)nC60

+ and (H2)nC70
+ (see the insets in

Figure 4) and (H2)nHC60
+ and (H2)nHC70

+ (not shown). In
other words, there is no isotope effect in our data. The statis-
tical significance of other, smaller anomalies seen in Figure 4
is questionable.

The abundance of doubly charged cluster ions in
Figure 4 has been enhanced by a factor 20. Statistical scatter
is large, but clear drops in the ion abundance occur at n = 32
and 37 for (D2)nDC60

2+ and (D2)nDC70
2+, respectively.

VI. RESULTS OF AB INITIO CALCULATIONS

In our previous work, covalent bonding of H and H2

with C60
+ was discussed.12 Here, we consider the interac-

tion of one to five hydrogen atoms with C60 with an empha-
sis on physisorption. The focus is on singly charged com-
plexes to which the bulk of experimental data pertains, but for
completeness we investigate some doubly charged and neu-
tral complexes as well. The reaction energies are given in
Table I for the functionals ωB97X-D (third column) and
PBE0 (fourth column). These energies are obtained without
zero-point correction. In the following discussion, we will re-
fer to the ωB97X-D results unless explicitly mentioned other-
wise. Some of the values of Table I are redundant since they
can be calculated from other values of this table using the
rows indicated in the comment column. For example, reaction
6 (3.2906 eV) plus reaction 11 (0.0732 eV) yields the energy
of reaction 12 (3.3638 eV).

Comparing our values with the literature (references are
provided in Table I) we find that both functionals (ωB97X-D
and PBE0) perform remarkably well for the small molecules,
reactions 2–4, and also for the ionization energy of the
fullerene. Taking zero-point correction into account the bond
energy of H2 is 4.4533 eV (with ωB97X-D), close to the ex-
perimentally observed 4.4784 eV. The binding energy of H
to C60

+ (3.29 eV) obtained with ωB97X-D is 0.22 eV higher
than the one obtained with PBE0. The H–C60 binding energy
(2.16 eV) is in good agreement with a value reported by Ve-
hvilainen et al.45 who obtained 2.01 eV in a DFT calculation
using the PBE functional and a plane wave basis set.

An energy barrier of 1.69 eV prevents chemisorption
of H2 at C60

+ although the system with two covalent C–H
bonds, H2C60

+
, lies 1.50 eV below physisorbed (H2)C60

+

(in the following, H2C60 will indicate two chemisorbed hy-
drogen atoms, while (H2)C60 indicates physisorbed dihy-
drogen). The energetically lowest isomer of H2C60

+ is the
one labeled “1a,1b” in the study of neutral H2C60 by Hen-
derson et al.46 Vehvilainen et al.45 calculated a very large
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TABLE I. Reaction energies �E. All values refer to the classical energy minima of reactants and products. H2C60 indicates two chemisorbed hydrogen atoms
while (H2)C60 indicates physisorbed dihydrogen.

Reaction Nos. Reaction �E (eV)a �E (eV)b Literature/comment

1 C60 → C60
+ + e 7.6469 7.3942 7.57,c 7.58d

2 H2 → H2
+ + e 15.4849 15.3313 15.42593e

3 H2 → 2H 4.7304 4.5941 4.4784e

4 H3
+ → H+ + H2 4.5727 4.5524 4.377e

5 HC60 → H + C60 2.1630 2.1338 2.01f

6 HC60
+ → H + C60

+ 3.2906 3.0732
7 (H2)C60 → H2 + C60 0.0495 0.0252 0.032,g 0.052h

8 (H2)C60
+ → H2 + C60

+ 0.0570 0.0376
9 H2C60

+ → (H2)C60
+ 1.5001

10 (H2)HC60
+ → H + (H2)C60

+ 3.3068 3.0652 From Reaction nos. 6, 8, and 11
11 (H2)HC60

+ → H2 + HC60
+ 0.0732 0.0297

12 (H2)HC60
+ → H + H2 + C60

+ 3.3638 3.1029 From Reaction nos. 6 and 11
13 (H2)2C60

+ → H + (H2)HC60
+ 1.4809 1.5564 From Reaction nos. 3, 10, and 14

14 (H2)2C60
+ → H2 + (H2)C60

+ 0.0573 0.0276
15 (H2)2C60

+ → 2H2 + C60
+ 0.1143 0.0652 From Reaction nos. 8 and 14

16 (H2)2HC60
+ → H + (H2)2C60

+ 3.3197 3.0636 From Reaction nos. 3, 13, and 17
17 (H2)2HC60

+ → H2 + (H2)HC60
+ 0.0702 0.0260

18 (H2)2HC60
+ → 2H2 + HC60

+ 0.1434 0.0557 From Reaction nos. 11 and 17
19 (H2)2HC60

+ → H + 2H2 + C60
+ 3.4339 3.1288 From Reaction nos. 15 and 16

20 (H2)C60
2+ → H2 + C60

2+ 0.0613
21 (H2)H2C60

2+ → H2 + H2C60
2+ 0.0845

22 (H2)HC60
2+ → H2 + HC60

2+ 0.0917
23 H2 + C60

2+ → H + HC60
2+ 1.3100

24 (H2)2 + C60
2+ → H + (H2)HC60

2+ 1.2183
25 H2C60

2+ → (H2)C60
2+ 1.8483

26 (H2)H2C60
2+ → (H2)2C60

2+ 1.8733

aωB97X-D without zero-point correction and without CP correction.
bPBE0 without zero-point correction and without CP correction.
cReference 63.
dReference 85.
eReference 86.
fReference 45.
gReference 47.
hReference 48.

barrier of 3.7 eV between the physi- and chemisorbed states
of the neutral system and an exothermicity of only 0.6 eV for
chemisorption.

Next, the physisorbed systems (H2)C60 and (H2)C60
+

will be discussed. The calculated adsorption energies are 49.5
and 57 meV, respectively. As expected, smaller energies result
from the PBE0 functional, e.g., 38 meV instead of 57 meV
for (H2)C60

+. As already pointed out by Yoon et al.,6 charged
fullerenes bind H2 more strongly than neutral C60. Physisorp-
tion of H2 on neutral fullerenes has already been investigated
by Korona et al.47 using symmetry adapted perturbation the-
ory, and by Denis48 using local spin density approximation
(LSDA) including the counterpoise correction (CP). Korona
et al.47 obtained 32 meV at a distance of 6.5 Å from the
center of C60, while Denis48 reports an adsorption energy of
52 meV without mentioning details of the optimized geome-
try. The values are in very good agreement with our values of
49.5 meV (at 6.2 Å) without CP or 37.5 meV (at 6.2 Å) in-
cluding CP; i.e., the CP correction amounts to 12 meV. Thus,
we estimate that counterpoise corrected values for adsorption
energies listed in Table I would be approximately 10 meV
lower, but the trends are correct nevertheless and the CP cor-
rection often overshoots.

Also of interest is a comparison with data for physisorp-
tion of H2 on nanotubes and graphene. From a Raman study
of H2 adsorbed on single-walled nanotubes, Williams et al.49

estimate a well depth of 46.6 meV; the molecule is preferen-
tially oriented flat against the surface. Brown et al.,50 based
on inelastic neutron scattering data, estimate a desorption en-
ergy of about 62 meV for single-walled nanotubes. Alonso
and co-workers have calculated the interaction of H and H2

with single-walled nanotubes.51 Their results depend on the
type of tube ((5,5) and (6,6) tubes have been considered),
and whether or not the carbon atoms are allowed to relax; H2

is bound to the outside of the tubes by 40–70 meV. In later
work they reported binding energies up to 100 meV for other
types of nanotubes.52 For graphene, calculated binding ener-
gies range from about 56 to 86 meV.53 It is reasonable that
our result for C60 is less than values for single-walled nan-
otubes and graphene because of the stronger curvature of the
C60.45, 54

In order to estimate the influence of zero-point vibrations
on the physisorption energies the potential energy curve for
(H2)C60

+ was calculated; it is depicted in Figure 5 together
with its five bound vibrational levels that are eigenstates to
the radial Schrödinger equation with reduced mass 3664.5 a.u.
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FIG. 5. Potential energy of physisorbed (H2)C60
+. Considered as a two

body potential it supports five vibrational levels at −0.046 eV (solid line),
−0.028 eV, −0.0015 eV, −0.007 eV, and −0.003 eV.

With this approximation for the zero-point energy (which ne-
glects all other possible vibrational degrees of freedom) the
physisorption energy is reduced from 57 to 46 meV.

Under our experimental conditions, the probability for
a hydrogen molecule to overcome the large barrier of
1.69 eV to covalently bind to C60

+ is exceedingly low. A re-
action with H3

+, however, faces no barrier at all. The proton
affinity of C60 (9.27 eV) is large enough to cause an immedi-
ate reaction with H3

+ to an equilibrium geometry where one
H binds covalently to C60, now positively charged, and H2 is
physisorbed. The overall process does not differ much from a
sequential reaction of H+ and H2 with C60. The physisorbed
H2 remains at 3.3–3.4 Å (PBE0) or 2.94–3.03 Å (ωB97X-D)
away from a face of the fullerene. This distance varies slightly
due to two effects. First, it depends on the position of the hy-
drogen molecule with respect to the position of the covalently
bound H atom. Second, there are different local minima in the
potential surface over hexagons or pentagons. The most sta-
ble structure obtained for (H2)HC60

+ is shown in Figure 6(a).
H2 is positioned over the hexagon which is closest to the co-
valently bound hydrogen atom, parallel to the hexagonal face.
The total energy of this configuration lies 4.77 eV below the
energy of separated H3

+ and C60. The physisorption energy
of H2 is 73 meV for this configuration; a smaller value of

66 meV is obtained for H2 over the pentagon adjacent to the
covalently bound H (see Table II). On the other hand, if H2

attaches to C60
+ over a hexagonal face far away from C–H

(Figure 6(b)), the binding energy decreases to 58 meV, nearly
the same as the 57 meV of H2 interacting with pristine C60

+.
In other words, the bound H facilitates the physisorption of
H2 in its vicinity.

Analysis of the site dependence has been extended to
systems with two H2 molecules physisorbed at C60

+. Ener-
gies are listed in Table II; optimized structures are shown in
Figs. 6(c)–6(e). In general, hexagonal faces are energetically
preferred to pentagonal faces by about 10 meV. Second, clus-
tering of the adsorbate increases the adsorption energy, as al-
ready observed for (H2)HC60

+. For (H2)2C60
+, the energy to

remove one H2 is 57 meV, the same as for (H2)C60
+ if the

two H2 are adsorbed over adjacent hexagons; the adsorption
energy decreases to 48 meV if the two H2 are adsorbed over
opposite hexagons.

Results for doubly charged cations are compiled in
Table I. The physisorption energy of H2 on C60

2+ of 61.3 meV
is, not surprisingly, slightly higher than the value for singly
charged fullerenes (57 meV); Yoon et al. reported an even
stronger increase by about 0.015 eV.6 The physisorption en-
ergy of H2 on HC60

2+ (91.7 meV) is, as expected, larger
than for H2 on pristine C60

2+ and also larger than on singly
charged HC60

+ (73.2 meV). The physisorption energies on
HC60

+ and HC60
2+ are higher than on C60

+ and C60
2+,

respectively, but a second chemisorbed H does not increase
the physisorption energy any further; see reactions 21 and 22.

Another interesting aspect is reaction 23 in which a free
H2 is converted to a chemisorbed H plus a free H. The re-
action is endothermic by 1.30 eV if it involves C60

2+. The
endothermicity of H production decreases by 0.09 eV if
the reagent is replaced by (H2)2 (reaction 24). However, it
is questionable if reaction of a large hydrogen cluster with
C60

2+ could possibly produce atomic hydrogen. We also
note that the energy difference between chemisorbed and ph-
ysisorbed H2 of the doubly charged complex is larger by
0.35 eV than for the singly charged complex (reactions 9
and 25).

TABLE II. Adsorption energies and distance from the center of the fullerene to the center of H2 for various structures and positions (without zero-point
correction, computed with ωB97X-D). “Adjacent” and “opposite” positions are relative to other hydrogen; some structures are illustrated in Figure 6.

Reaction Position Energy (eV) Distance (Å) Fig. 6

(H2)C60 → H2 + C60 Hex 0.0495 6.178
Pent 0.0388 6.368

(H2)C60
+ → H2 + C60

+ Hex 0.0570 6.213
Pent 0.0445 6.394

(H2)HC60
+ → H2 + HC60

+ Hex adj 0.0732 6.192 (a)
Pent adj 0.0659 6.385
Hex opp 0.0581 6.193 (b)

(H2)2C60
+ → H2 + (H2)C60

+ Hex and hex adj 0.0573 6.206 and 6.209 (c)
Hex and pent adj 0.0452 6.211 and 6.386
Hex and hex opp 0.0477 6.202 and 6.202 (d)

(H2)2HC60
+ → H2 + (H2)HC60

+ Hex and hex adj 0.0702 6.184 and 6.194
Hex and pent adj 0.0641 6.183 and 6.373 (e)
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FIG. 6. Five different optimized HxC60
+ structures: (H2)HC60

+ ((a) and (b)), (H2)2C60
+ ((c) and (d)), (H2)2HC60

+ (e).

VII. DISCUSSION

Two singly charged ion series have been identified in
mass spectra of helium nanodroplets doped with fullerene
and hydrogen, namely, odd-numbered HxCm

+ (x odd, also
written (H2)nHCm

+), and even-numbered HxCm
+ (written

(H2)nCm
+), where m = 60 or 70. In experiments with D2

the corresponding ion series have been identified, plus dou-
bly charged odd-numbered (D2)nDCm

2+. We have not found
any statistically significant differences in the ion abundance of
fullerenes complexed with H2 and D2 but anomalies in the ion
abundance are more reliably extracted from experiments with
D2 because the presence of isotopologues that contain one or
more 13C tends to wash out anomalies in the mass spectra as
illustrated in Figure 1. In the following discussion, which will
focus mostly on singly charged species, the term “hydrogen”
or H2 will refer to the element; we will not distinguish be-
tween H2 and D2 except when specifically looking for a H–D
isotope effect.

A. Ionization mechanism and the odd-even effect

Ionization of pure hydrogen clusters by electron impact
or UV photons primarily results in odd-numbered cluster ions
[(H2)nH]+; the abundance of even-numbered (H2)n

+ is lower
by about two orders of magnitude.55 The low intensity of
(H2)n

+ arises from the large exothermicity of the reaction

H2
+ + H2 → H3

+ + H + 1.727 eV; (R1)

the exothermicity follows from the H2
+ bond strength of

2.650 eV56 and the H2 proton affinity of 4.377 eV (Table I).
The hydrogen dimer (H2)2 is very weakly bound; therefore, a
similarly large reaction energy is released after vertical ion-
ization of (H2)2. According to an ab initio direct dynamics
calculation, vertical ionization of the H2 dimer, trimer, or hex-
amer leads to rapid formation of a vibrationally hot H3

+ and
ejection of an energetic hydrogen atom even though H3

+H is
intrinsically stable with respect to H loss.57

Electron ionization of hydrogen clusters embedded in
helium nanodroplets (in the absence of C60) also results in
predominantly odd-numbered hydrogen cluster ions44, 58 even
though the ionization mechanism is very different, namely,
charge transfer from helium cations15, 59, 60 versus direct ion-
ization (details of the ionization mechanism will be discussed
in Sec. VII B). Thus, the strong suppression of the odd-even
effect for HxCm

+ cluster ions must be sought in the role of the
fullerene.

Successive pickup of molecules by a helium nanodroplet
will always lead to growth of a single cluster ((H2)nC60 in the
present study) in the center of the superfluid droplet33 unless
the pickup rate is extremely large.62 Thus, one has to consider
reactions following charge transfer from He+ directly to C60

(ionization energy 7.57 eV63), or via the hydrogen layer to
C60. We first consider the energetics of (H2)nC60. The data
in Table I reveal that ejection of H from (H2)2C60

+ (with H2

being physisorbed) is significantly endothermic,

(H2)2C60
+ → (H2)HC60

+ + H − 1.48 eV. (R2)

Even more importantly, the reaction is impeded by a large
energy barrier. For reaction (R2) to take place one of the
physisorbed H2 molecules has to overcome a barrier of
1.69 eV (computed for H2C60

+) that separates the
physisorbed from the chemisorbed species. Thus, if ionization
of the hydrogen-fullerene complex occurs by direct charge
transfer from He+ to C60, ejection of H and the formation of
odd-numbered (H2)nHC60

+ would be suppressed.
On the other hand, if the fullerene were initially fully

coated by layers of H2 one may expect charge transfer to the
hydrogen layer and formation of H3

+ because of the large
exothermicity of reaction (R1) which is barrierless;57 H would
be rapidly expelled before the net charge is eventually trans-
ferred to the fullerene.

The fact that we observe approximately equal (within a
factor two) abundances for odd- and even-numbered HxCm

+

suggests that both scenarios, direct or indirect charge trans-
fer from He+ to C60, apply. Testing this proposition would be
difficult, though. The number of H2 in the initial neutral com-
plex will always feature a broad distribution, and charge trans-
fer from He+ to the dopant will release a very large amount
of energy (about 18 eV, the difference between the ionization
energies of He and C60). As a result, a large number of H2

(in addition to He) will be ejected from the nascent ion, and
the neutral precursors of the observed HxCm

+ ions will be
complexes containing a large, poorly defined number of H2.
It would, therefore, be difficult to observe a correlation be-
tween the average number of H2 in the neutral complex (con-
trolled by the H2 pressure in the pickup cell), and the relative
abundance of even-numbered (H2)nCm

+.

B. Doubly charged ions

A weak series of doubly charged [(H2)nHCm]2+ is ob-
served in Figs. 2 and 3. The ions could be identified only when
deuterium was used, and only for one particular isotopologue
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of the fullerene. The appearance of these ions is remarkable
for two reasons:

(1) The observed doubly charged complexes [(H2)nHCm]2+

are surprisingly small, even [(H2)HCm]2+ is identified,
and

(2) The formation of doubly charged complexes upon
electron ionization of doped helium clusters is rather
uncommon.64

First, homogeneous van der Waals bound clusters are not ob-
servable below a size limit, or “critical size” because of spon-
taneous charge separation (Coulomb explosion) into singly
charged fragments. No doubly charged pure hydrogen clus-
ter ions have yet been reported; a simple model that is based
on a liquid-drop approximation predicts a critical size of
n = 863 for (H2)n

2+.65 Second, when helium droplets doped
with a complex X interact with energetic electrons, the prob-
ability of direct ionization of X is vanishingly small. Instead,
either He+ or a metastable He∗ (2 3S1) are formed, with en-
ergy thresholds of 24.59 and 19.8 eV, respectively. Rapid mo-
tion of He+ towards the dopant, followed by charge transfer,

He+ + X → He + X+ (R3)

proceeds by charge hopping aided by the attraction between
the ion and the induced-dipole moment of the dopant.15, 59 If X
is a molecule or cluster it may fragment further, X+ = (AB)+

→ A+ + B.
Alternatively, ionization of the dopant may proceed by

Penning ionization,

He∗(2 3S1) + X → He + X+ + e. (R4)

Penning ionization is particularly efficient when the dopant
resides on the surface,61 but there is experimental evidence
that it is also relevant for the formation of doubly charged
dopant ions.64

A doubly charged dopant can be formed only if its ion-
ization energy is below the energy to form He∗(2 3S1) or He+.
This condition is rarely met for chemically stable molecules.
The energy required to form 2H+ from H2, 31.7 eV, is read-
ily computed from the data in Table I. However, the energies
required to form C60

2+ or C70
2+ from the respective neu-

tral precursors are only 19.00 and 18.84 eV, respectively.66

Therefore, a doubly charged fullerene with one or more hy-
drogen attached could be formed by either Penning ionization
or charge transfer from He+. For example, consider the ener-
getics of [H2C60]2+:

H2C60 → H2 + C60 − 0.050 eV, (R5a)

→ H2
+ + C60

+ + 2e − 23.05 eV, (R5b)

→ H2 + C60
2+ + 2e − 19.05 eV, (R5c)

where the reaction energies are computed from entries in
Table I (using experimental values if available), and the en-
ergy required to form C60

2+ from C60.66 Reaction (R5c) is
less endothermic than the charge separation reaction (R5b) by

4.0 eV. As a result one expects that the two positive holes
in the complex [H2C60]2+ are localized on the fullerene, H2

is physisorbed at C60
2+, and H2C60

2+ is stable with respect
to charge separation. A similar reasoning explains why small
doubly charged cluster ions such as HenPb2+, formed by ion-
ization of lead-doped helium droplets with a femtosecond
laser, or (CO2)nCu2+ formed by electron ionization of neu-
tral clusters,67 are stable with respect to charge separation for
all values of n.

The energetics of odd-numbered [(H2)nHCm]2+ will be
different but here, too, the two holes are likely to be localized
on the fullerene. The energetics also depend on the ligand. In
our previous work on water-C60 and ammonia-C60 complexes,
we had observed dehydrogenated ions, (H2O)nOHC60

+ and
(NH3)nNH2C60

+ which were particularly prominent for n
= 0.68 We hypothesized that they involve an intermediate
C60

2+ followed by charge transfer to the ligands and charge
separation into dehydrogenated plus protonated ions. For wa-
ter, the first ionization energy (12.621 eV) is close to the sec-
ond ionization energy of C60 (11.4 eV) and for NH3 the first
ionization energy (10.070 eV) is even lower; this provides
a rational for the absence of doubly charged ions in those
studies.

The picture presented so far is incomplete. First, another
mechanism that may occur at high electron energies (70 eV
were used in the current study) is formation of two He∗ within
the same droplet by the incident electron; sequential Penning
ionization will then provide a total energy of 2 × 19.8 eV.
An energy threshold of 40 eV was, indeed, observed for the
formation of doubly charged fragment ions of CH3I.64 In an-
other recent study, methane clusters in helium were ionized
by electron ionization; doubly charged (CH4)n

2+ were ob-
served above a critical size of 70 with an energy threshold of
44 eV.69 The findings were attributed to formation of He∗(2
3S1) + He+. In this model, a singly charged dopant ion is
formed by charge transfer from He+; Penning ionization of
the ion in a collision with He∗ is then facilitated by the large
attraction between the dopant ion and the highly polarizable
He∗.69

The very weak signal of doubly charged ions in the
present study precludes a measurement of their appearance
energy; their formation may be due to any one of the four
mechanisms mentioned above, or a combination of them:
Penning ionization with He∗, charge transfer from He+, se-
quential Penning ionization, or charge transfer followed by
Penning ionization. All these processes would be energeti-
cally feasible.

C. Abundance anomalies and adsorption
of H2 on graphitic surfaces

The ion abundance was extracted from the ion yield mea-
sured by mass spectrometry as described in Sec. III, in order
to correct for contributions of isotopologues containing one
or more 13C.

Anomalies in the abundance An of cluster ions may
be caused by several factors including kinetics, size-
selective ionization or detection, etc. For atomic clusters
that are prone to fragmentation upon ionization, including
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van-der-Waals clusters embedded in helium,70 the most likely
cause are anomalies in the dissociation energies Dn (often
called evaporation or separation energies), i.e., the difference
between total energies En of cluster ions of adjacent size in
their most stable configurations,

Dn = −En + En−1. (3)

The relation between the size dependence of Dn and An has
been explored by several authors,71 based on the model of
the evaporative ensemble.72 Key ingredients of this model are
that the initial cluster distribution is broad, dissociation is a
statistical process, and each cluster ion that is observed has
undergone at least one evaporation. The small heat capacity of
clusters containing less than n ≈ 102 units ensures that each
evaporation cools the cluster significantly, thus leading to a
drastic (at least a factor 10) reduction of the rate coefficient
k. As a result, an ion ensemble that is interrogated at some
time t after ionization will be characterized by rather well
defined upper and lower limits to its (vibrational) excitation
energy En

∗.73 The energy limits are related to the dissocia-
tion energies Dn and Dn+1, respectively. An upper limit exists
because very hot Xn

+ would rapidly dissociate into Xn−1
+;

a lower limit exists because very cold precursor ions Xn+1
+

will not dissociate into Xn
+ on the experimental time scale.

The energy limits depend only weakly on the time t through
the Gspann factor, G = ln (tν),72, 74 where ν is the frequency
factor in the Arrhenius relation,

k = ν exp

(
− Dn

kBTe

)
, (4)

Here, kB is the Boltzmann factor, and Te is the emission
temperature.75 If the microcanonical heat capacities Cn of
the cluster ions are approximated by the equipartition the-
orem, Cn = (3n – 7)kB, one can derive a quantitative rela-
tion between relative dissociation energies Dn/D̃n and relative
ion abundances An/Ãn, where the tilded quantities are func-
tions that are obtained by fitting smooth functions to Dn and
An, respectively.76 Normalization to these smooth functions
is needed because local anomalies in the ion abundance pro-
vide information about local variations in Dn, not about global
trends.

A special situation arises if Cn is much less than the
classical value, a situation probably encountered for alkali
monomer and dimer ions solvated in helium,77 and fullerene
ions solvated in helium10 or hydrogen. The computed energies
for desorption of H2 from HxC60

+ (x = 2, 3, 4, 5) amount to
50–70 meV (Table I); the corresponding vibrational tempera-
ture of the complexes may thus be estimated from the evapo-
rative model to be 30–40 K.78, 79 At this temperature C60

+ will
be in its vibrational ground state, and one obtains the simple
relation

Dn = An

Ãn

D̃n, (5)

that is, local variations in the abundance are directly propor-
tional to local variations in the dissociation energy. Additional
details have been discussed in Ref. 77.

We have applied Eq. (5) to derive relative dissocia-
tion energies Dn/D̃n of singly charged hydrogen-fullerene

(a)

(b)

(c)

(d)

FIG. 7. Relative dissociation energies derived from the ion abundance
(Figure 4) with the help of Eq. (5).

complexes; results are displayed in Figure 7. The smooth
functions Ãn were obtained from the ion abundances
(Figure 4) by weighted averaging over several adjacent
sizes.76 The weights were calculated from a Gaussian with
a fixed width of �n = 2 (standard deviation). The procedure
reveals that the main anomalies translate to a local enhance-
ment of the dissociation energy by 30%–50% for the most
stable cluster (at n = 32 for C60 and 37 for C70), and a de-
crease by some 30% relative to the average energy for n = 33
and 38, respectively. These values do not change much if the
smooth function Ãn is derived differently.

An appealing interpretation of the abundance anomalies
of even-numbered hydrogen-fullerene complexes (H2)nCm

+

is an enhanced ion stability when one H2 is bound to each
of the carbon rings of the fullerene substrate. Fullerenes are
characterized by 12 pentagons; the number of hexagonal faces
is 20 for C60 and 25 for C70. The corresponding anomalies at
32 and 37 have also been observed for complexes of fullerenes
with alkaline earth metals,80 helium,10 and methane.81 This
interpretation would also provide a rational for the abundance
anomalies observed for the odd-numbered series (H2)nHCm

z+

at 32 (m = 60) and 37 (m = 70), for z = 1 and 2, because our
calculations indicate that the additional lone H atom would be
covalently bound atop a carbon atom; it would not block any
of the adsorption sites over the hexagons or pentagons that are
preferred by the physisorbed H2 molecules.



074311-11 Kaiser et al. J. Chem. Phys. 138, 074311 (2013)

A fully decorated fullerene may be viewed as the ana-
logue of a graphite surface, or graphene sheet, with the
adsorbate forming the commensurate 1 × 1 phase on the hon-
eycomb lattice. This phase does not actually form because it
would imply a separation of only 2.46 Å between adjacent ad-
sorbate molecules, significantly less than the size of H2 or He.
At lower coverage, however, a commensurate adsorbate layer
forms in which all second-nearest hexagonal adsorption sites
are occupied. The density of this so-called

√
3×√

3 commen-
surate phase is 0.0637 Å−2, one third of the 1 × 1 phase; the
spacing between adsorbate molecules is 2.46

√
3 = 4.26 Å.

However, the nearest-neighbor distance in crystalline hy-
drogen is only 3.75 Å.82 Thus, the

√
3×√

3 commensurate
phase is underdense; the first monolayer of H2 on graphite is
not complete until the coverage reaches 0.0927 Å−2.9 Might
the commensurate 1 × 1 phase of H2 on C60

+ formed at
n = 32 be underdense as well? In recent theoretical studies
of neutral or cationic HenC60, it was found10, 11, 83 that the
first solvation shell can accommodate many more atoms in
addition to 32 that are in registered sites, in agreement with
experiment.10 Similar theoretical studies are not available for
the hydrogen-C60

+ system but if one multiplies the number
(60) of atoms in the first solvation shell of helium-C60

+ with
the ratio between the monolayer coverage of H2 on graphite
(0.0927 Å−2)9 and He on graphite (0.120 Å−2)84 one expects
that (H2)nC60

+ can accommodate ≈46 H2 in its first solva-
tion shell. Similarly, for HenC70

+ we observed closure of the
first solvation shell at 62;10 scaled as described above one pre-
dicts that (H2)nC70

+ completes the first solvation shell at ≈48.
These values (46 and 48) agree quite well with the anomalies
observed at n = 49 and 51, see Figure 7. Thus, these values
signal the closure of the first H2 solvation shells around C60

+

and C70
+.

The hydrogen -graphite system shows a pronounced iso-
tope effect: The density of the first deuterium monolayer is
0.0987 Å−2, 6.5% larger than for H2.9 A similarly large iso-
tope effect for the hydrogen-fullerene system would increase
the number of molecules in the first solvation shell from 49 to
52 for C60

+, and 51 to 54 for C70
+. No such shift is seen in the

experimental data. The isotope effect on graphene stems from
the larger delocalization of the lighter H2 molecules, leading
to an increased repulsion at a given distance, compared to D2.
One may speculate that the increased binding between hy-
drogen or deuterium and charged fullerenes, as opposed to
the weaker binding with planar graphite, mitigates the iso-
tope effect. Another factor may be the corrugation which is
stronger over the curved fullerene surface, thus hindering the
addition of hydrogen molecules beyond the 1 × 1 phase. A
third and more compelling reason for the lack of an isotope
effect for fullerenes might be that, for a curved substrate, the
H2 molecules can reduce their mutual repulsion by filling the
solvation shell at a slightly larger distance from the center of
C60

+ if this is energetically more favorable than lowering the
solvation number. We cannot compute the effect of zero point
motion for a fully solvated C60

+, but for (H2)C60
+ we find that

the mean radial distance in the quantum mechanical ground
state is, indeed, about 0.55% larger than for (D2)C60

+. Ob-
viously such an increase in distance would not mitigate the
repulsion between neighbors over a planar substrate.

VIII. CONCLUSIONS

The corrugation of graphitic surfaces is known to affect
the phase diagram of adsorbates. The strength of the cor-
rugation may be increased, for example, by increasing the
curvature of the surface. At the same time, curvature also in-
creases the distance between molecules that reside in com-
mensurate adsorption sites. The curvature of the C60 surface
is large enough to accommodate one hydrogen molecule per
polygon in an energetically preferred phase that is equiva-
lent to the 1 × 1 phase which is not accessible to H2, He, or
other gases over a planar graphitic surface. The commensu-
rate 1 × 1 phase is also observed for C70 cations, and doubly
charged C60 and C70. Furthermore, our data suggest that the
first adsorption layer is not complete until 17 additional H2

molecules are adsorbed on C60
+, or 14 on C70

+. C70
+ shows

a smaller increase because the average curvature and thus the
average distance between H2 adsorbed in the commensurate
phase is smaller than for C60. Although our experimental ap-
proach has its shortcomings, e.g., we cannot control the tem-
perature, it does provide accurate values for the coverage and,
hence, allows to accurately determine the effect of curvature
on adsorption.
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