2,924 research outputs found

    Non-structural carbohydrate pools in a tropical forest

    Get PDF
    The pool size of mobile, i.e. non-structural carbohydrates (NSC) in trees reflects the balance between net photosynthetic carbon uptake (source) and irreversible investments in structures or loss of carbon (sink). The seasonal variation of NSC concentration should reflect the sink/source relationship, provided all tissues from root to crown tops are considered. Using the Smithsonian canopy crane in Panama we studied NSC concentrations in a semi-deciduous tropical forest over 22months. In the 9 most intensively studied species (out of the 17 investigated), we found higher NSC concentrations (starch, glucose, fructose, sucrose) across all species and organs in the dry season than in the wet season (NSC 7.2% vs 5.8% of dry matter in leaves, 8.8/6.0 in branches, 9.7/8.5 in stems, 8.3/6.4 in coarse and 3.9/2.2 in fine roots). Since this increase was due to starch only, we attribute this to drought-constrained growth (photosynthesis less affected by drought than sink activity). Species-specific phenological rhythms (leafing or fruiting) did not overturn these seasonal trends. Most of the stem volume (diameter at breast height around 40cm) stores NSC. We present the first whole forest estimate of NSC pool size, assuming a 200tha−1 forest biomass: 8% of this i.e. ca. 16tha−1 is NSC, with ca. 13tha−1 in stems and branches, ca. 0.5 and 2.8tha−1 in leaves and roots. Starch alone (ca. 10.5tha−1) accounts for far more C than would be needed to replace the total leaf canopy without additional photosynthesis. NSC never passed through a period of significant depletion. Leaf flushing did not draw heavily upon NSC pools. Overall, the data imply a high carbon supply status of this forest and that growth during the dry season is not carbon limited. Rather, water shortage seems to limit carbon investment (new tissue formation) directly, leaving little leeway for a direct CO2 fertilization effect

    Coevolutionary Dynamics: From Finite to Infinite Populations

    Get PDF
    Traditionally, frequency dependent evolutionary dynamics is described by deterministic replicator dynamics assuming implicitly infinite population sizes. Only recently have stochastic processes been introduced to study evolutionary dynamics in finite populations. However, the relationship between deterministic and stochastic approaches remained unclear. Here we solve this problem by explicitly considering large populations. In particular, we identify different microscopic stochastic processes that lead to the standard or the adjusted replicator dynamics. Moreover, differences on the individual level can lead to qualitatively different dynamics in asymmetric conflicts and, depending on the population size, can even invert the direction of the evolutionary process.Comment: 4 pages (2 figs included). Published in Phys. Rev. Lett., December 200

    Serum 25-Hydroxyvitamin D and Intact Parathyroid Hormone Influence Muscle Outcomes in Children and Adolescents

    Get PDF
    Increases in 25-hydroxyvitamin D concentrations are shown to improve strength in adults; however, data in pediatric populations are scant and equivocal. In this ancillary study of a larger-scale, multi-sited, double-blind, randomized, placebo-controlled vitamin D intervention in US children and adolescents, we examined the associations between changes in vitamin D metabolites and changes in muscle mass, strength, and composition after 12 weeks of vitamin D3 supplementation. Healthy male and female, black and white children and adolescents between the ages of 9 and 13 years from two US states (Georgia 34°N and Indiana 40°N) were enrolled in the study and randomly assigned to receive an oral vitamin D3 dose of 0, 400, 1000, 2000, or 4000 IU/d for 12 weeks between the winter months of 2009 to 2011 (N = 324). Analyses of covariance, partial correlations, and regression analyses of baseline and 12-week changes (post-baseline) in vitamin D metabolites (serum 25(OH)D, 1,25(OH)2 D, intact parathyroid hormone [iPTH]), and outcomes of muscle mass, strength, and composition (total body fat-free soft tissue [FFST], handgrip strength, forearm and calf muscle cross-sectional area [MCSA], muscle density, and intermuscular adipose tissue [IMAT]) were assessed. Serum 25(OH)D and 1,25(OH)2 D, but not iPTH, increased over time, as did fat mass, FFST, forearm and calf MCSA, forearm IMAT, and handgrip strength (p < 0.05). Vitamin D metabolites were not associated with muscle strength at baseline nor after the 12-week intervention. Changes in serum 25(OH)D correlated with decreases in forearm IMAT, whereas changes in serum iPTH predicted increases in forearm and calf MCSA and IMAT (p < 0.05). Overall, increases in 25(OH)D did not influence muscle mass or strength in vitamin D-sufficient children and adolescents; however, the role of iPTH on muscle composition in this population is unknown and warrants further investigation

    Local-Oscillator Noise Coupling in Balanced Homodyne Readout for Advanced Gravitational Wave Detectors

    Get PDF
    The second generation of interferometric gravitational wave detectors are quickly approaching their design sensitivity. For the first time these detectors will become limited by quantum back-action noise. Several back-action evasion techniques have been proposed to further increase the detector sensitivity. Since most proposals rely on a flexible readout of the full amplitude- and phase-quadrature space of the output light field, balanced homodyne detection is generally expected to replace the currently used DC readout. Up to now, little investigation has been undertaken into how balanced homodyne detection can be successfully transferred from its ubiquitous application in table-top quantum optics experiments to large-scale interferometers with suspended optics. Here we derive implementation requirements with respect to local oscillator noise couplings and highlight potential issues with the example of the Glasgow Sagnac Speed Meter experiment, as well as for a future upgrade to the Advanced LIGO detectors.Comment: 7 pages, 5 figure

    Osteocyte-Specific Deletion of the α2δ1 Auxiliary Voltage Sensitive Calcium Channel Subunit

    Get PDF
    Context: Skeletal unloading due to disuse, disease, or aging increases bone loss and the risk of skeletal fracture. Conversely, mechanical loading is anabolic to the skeleton, promoting skeletal integrity through increased bone formation. As calcium influx is the first measurable response of bone cells to mechanical stimuli, voltage sensitive calcium channels (VSCCs) play a critical role in bone formation. Given VSCC activity is influenced by its auxiliary α2δ1 subunit, regulating the gating kinetics of the channel’s pore-forming (α1) subunit and forward trafficking of VSCCs to cell membranes, the α2δ1 subunit may govern anabolic bone responses. Objective & Design: We hypothesized that osteocyte-specific α2δ1 deletion in a mouse model would impair skeletal development, decrease bone formation and mechanosensitivity. Methods: Generation of an osteocyte-specific α2δ1 knockout was accomplished by crossing mice (C57BL/6) harboring LoxP sequences flanking Cacna2d1, the gene encoding α2δ1, with mice expressing Cre recombinase under the control of the Dmp1 (10Kb) promoter (Cacna2d1fl/fl, Dmp1-Cre+). To assess skeletal phenotype and mechanosensitivity, longitudinal whole body and site-specific DXA, in vivo μCT (10wk old), and two weeks of tibial loading (16wks) will be conducted before femurs are collected at 20 wks for mechanical testing, ex vivo μCT, and quantitative histomorphometry. Results & Conclusion: Preliminary analyses show no differences in whole body or site-specific BMD and BMC values between mice over time, suggesting osteocyte-specific α2δ1 deletion may not influence skeletal development. However, key differences in mechanosensitivity following tibial loading are expected given the potential role of α2δ1 in mechanically-induced bone formation

    Impacts of Recreational Diving on Hawksbill Sea Turtles (Eretmochelys imbricata) in the Roatán Marine Park, Honduras: Summer 2014

    Get PDF
    This report represents the ongoing work of the Protective Turtle Ecology Center for Training, Outreach, and Research, Inc. (ProTECTOR Inc.) in Honduras during the 2014 season and is provided in partial fulfillment of research agreements with the Roatán Marine Park

    Effects of static and dynamic higher-order optical modes in balanced homodyne readout for future gravitational waves detectors

    Get PDF
    With the recent detection of Gravitational waves (GW), marking the start of the new field of GW astronomy, the push for building more sensitive laser-interferometric gravitational wave detectors (GWD) has never been stronger. Balanced homodyne detection (BHD) allows for a quantum noise (QN) limited readout of arbitrary light field quadratures, and has therefore been suggested as a vital building block for upgrades to Advanced LIGO and third generation observatories. In terms of the practical implementation of BHD, we develop a full framework for analyzing the static optical high order modes (HOMs) occurring in the BHD paths related to the misalignment or mode matching at the input and output ports of the laser interferometer. We find the effects of HOMs on the quantum noise limited sensitivity is independent of the actual interferometer configuration, e.g. Michelson and Sagnac interferometers are effected in the same way. We show that misalignment of the output ports of the interferometer (output misalignment) only effects the high frequency part of the quantum noise limited sensitivity (detection noise). However, at low frequencies, HOMs reduce the interferometer response and the radiation pressure noise (back action noise) by the same amount and hence the quantum noise limited sensitivity is not negatively effected in that frequency range. We show that the misalignment of laser into the interferometer (input misalignment) produces the same effect as output misalignment and additionally decreases the power inside the interferometer. We also analyze dynamic HOM effects, such as beam jitter created by the suspended mirrors of the BHD. Our analyses can be directly applied to any BHD implementation in a future GWD. Moreover, we apply our analytical techniques to the example of the speed meter proof of concept experiment under construction in Glasgow. We find that for our experimental parameters, the performance of our seismic isolation system in the BHD paths is compatible with the design sensitivity of the experiment

    Demonstration of a switchable damping system to allow low-noise operation of high-Q low-mass suspension systems

    Get PDF
    Low mass suspension systems with high-Q pendulum stages are used to enable quantum radiation pressure noise limited experiments. Utilising multiple pendulum stages with vertical blade springs and materials with high quality factors provides attenuation of seismic and thermal noise, however damping of these high-Q pendulum systems in multiple degrees of freedom is essential for practical implementation. Viscous damping such as eddy-current damping can be employed but introduces displacement noise from force noise due to thermal fluctuations in the damping system. In this paper we demonstrate a passive damping system with adjustable damping strength as a solution for this problem that can be used for low mass suspension systems without adding additional displacement noise in science mode. We show a reduction of the damping factor by a factor of 8 on a test suspension and provide a general optimisation for this system.Comment: 5 pages, 5 figure

    Bone Microarchitecture and Strength Adaptation to Physical Activity: A Within-Subject Controlled, HRpQCT Study

    Get PDF
    Purpose Physical activity benefits bone mass and cortical bone size. The current study assessed the impact of chronic (≥10 years) physical activity on trabecular microarchitectural properties and micro-finite element (μFE) analyses of estimated bone strength. Methods Female collegiate-level tennis players (n=15; age=20.3±0.9 yrs) were used as a within-subject controlled model of chronic unilateral upper-extremity physical activity. Racquet-to-nonracquet arm differences at the distal radius and radial diaphysis were assessed using high-resolution peripheral computed tomography (HRpQCT). The distal tibia and tibial diaphysis in both legs were also assessed, and cross-country runners (n=15; age=20.8±1.2 yrs) included as controls. Results The distal radius of the racquet arm had 11.8% (95% confidence interval [CI], 7.9 to 15.7%) greater trabecular bone volume/tissue volume, with trabeculae that were greater in number, thickness, connectivity, and proximity to each other than in the nonracquet arm (all p<0.01). Combined with enhanced cortical bone properties, the microarchitectural advantages at the distal radius contributed a 18.7% (95% CI, 13.0 to 24.4%) racquet-to-nonracquet arm difference in predicted load before failure. At the radial diaphysis, predicted load to failure was 9.6% (95% CI, 6.7 to 12.6%) greater in the racquet vs. nonracquet arm. There were fewer and smaller side-to-side differences at the distal tibia; however, the tibial diaphysis in the leg opposite the racquet arm was larger with a thicker cortex and had 4.4% (95% CI, 1.7 to 7.1%) greater strength than the contralateral leg. Conclusion Chronically elevated physical activity enhances trabecular microarchitecture and μFE estimated strength, furthering observations from short-term longitudinal studies. The data also demonstrate tennis players exhibit crossed symmetry wherein the leg opposite the racquet arm possesses enhanced tibial properties compared to in the contralateral leg

    IS 2009: Changing the Course for Undergraduate IS Model Curricula

    Get PDF
    In this panel, the joint AIS / ACM Information Systems undergraduate model curriculum task force members together with other curriculum experts will be presenting and discussing the IS 2009 Curriculum Guidelines for Undergraduate Degree Programs in Information Systems document and soliciting IS community feedback regarding ongoing IS curriculum development efforts. As such, the panel discussion will center on the significant components embedded in the newly revised curriculum document. This includes: 1) an introduction to the key principles that guided the development of the document, 2) a list of features incorporated into the new model curricula, 3) the future of curriculum development efforts, and 4) proposed mechanism to solicit feedback from the academy
    • …
    corecore