360 research outputs found

    Implications of hydraulic anisotropy in periglacial cover beds for flood simulation in low mountain ranges (Ore Mountains, Germany)

    Get PDF
    The simulation of floods with conceptual rainfall-runoff models is a frequently used method for various applications in flood risk management. In mountain areas, the identification of the optimum model parameters during the calibration is often difficult because of the complexity and variability of catchment properties and hydrological processes. Central European mountain ranges are typically covered by Pleistocene periglacial slope deposits. The hydraulic conductivity of the cover beds shows a high degree of anisotropy, so it is important to understand the role of this effect in flood models of mesoscale mountain watersheds. Based on previous field work, the study analyses the sensitivity of the NASIM modeling system to a variation of vertical and lateral hydraulic conductivity for the Upper Flöha watershed (Ore Mountains, Germany). Depending on the objective function (Nash-Sutcliffe coefficient, peak discharge), two diametric parameter sets were identified both resulting in a high goodness-of-fit for total discharge of the flood events, but only one reflects the hydrological process knowledge. In a second step, the knowledge of the spatial distribution of the cover beds is used to investigate the potential for a simplification of the model parameterisation. The soil types commonly used for the spatial discretisation of rainfall-runoff models were aggregated to one main class (periglacial cover beds only). With such a simplified model, the total flood discharge and the runoff components were simulated with the same goodness of fit as with the original model. In general, the results point out that the anisotropy in the unsaturated zone, which is intensified by periglacial cover beds, is an important element of flood models. First, a parameter set corresponding to the hydraulic anisotropy in the cover beds is essential for the optimum reproduction of the flood dynamics. Second, a discretisation of soil types is not necessarily required for flood modeling in Central European mountain areas

    a retrospective study

    Get PDF
    Introduction Emergency treatment of major sub-/total traumatic amputations continue to represent a clinical challenge due to high infection rates and serious handicaps. Effective treatment is based on two columns: surgery and antimicrobial therapy. Detailed identification of pathogen spectrum and epidemiology associated with these injuries is of tremendous importance as it guides the initial empiric antibiotic regimen and prevents adverse septic effents. Methods In this retrospective study 51 patients with major traumatic amputations (n = 16) and subtotal amputations (n = 35) treated from 2001 to 2010 in our trauma center were investigated. All patients received emergency surgery, debridement with microbiological testing within 6 h after admission and empircic antimicrobial therapy. Additionally to baseline patient characteristics, the incidence of positive standardized microbiologic testing combined with clinical signs of infection, pathogen spectrum, administered antimicrobial agents and clinical complications were analyzed. Results 70.6% of the patients (n = 36) acquired wound infection. In 39% wounds were contaminated on day 1, whereas the mean length of duration until first pathogen detection was 9.1 ± 13.4 days after injury. In 37% polymicrobial colonization and 28% Pseudomonas were responsible for wound infections during hospitalization. In 45% the empirc antimicrobial therapy focussed on Gram positive strains did not cover the detected bacteria, according antimicrobial resistogram. It was significantly more often found in infections associated with Pseudomonas (p 0.02) or polymicrobial wound infections. Conclusions This epidemiologic study reveals a pathogen shift from Gram-positive to Gram- negative strains with high incidence of Pseudomonas and polymicrobial infections in sub-/total major traumatic amputations. Therefore, empiric antimicrobial treatment historically focussing on Gram-positive strains must be adjusted. We recommend the use of Piperacillin/Tazobactam for these injuries. As soon as possible antimicrobial treatment should be changed from empiric to goal directed therapy according to the microbiological tests and resistogram results

    Impact of high prevalence of pseudomonas and polymicrobial gram-negative infections in major sub-/total traumatic amputations on empiric antimicrobial therapy: a retrospective study

    Get PDF
    INTRODUCTION: Emergency treatment of major sub-/total traumatic amputations continue to represent a clinical challenge due to high infection rates and serious handicaps. Effective treatment is based on two columns: surgery and antimicrobial therapy. Detailed identification of pathogen spectrum and epidemiology associated with these injuries is of tremendous importance as it guides the initial empiric antibiotic regimen and prevents adverse septic effents. METHODS: In this retrospective study 51 patients with major traumatic amputations (n = 16) and subtotal amputations (n = 35) treated from 2001 to 2010 in our trauma center were investigated. All patients received emergency surgery, debridement with microbiological testing within 6 h after admission and empircic antimicrobial therapy. Additionally to baseline patient characteristics, the incidence of positive standardized microbiologic testing combined with clinical signs of infection, pathogen spectrum, administered antimicrobial agents and clinical complications were analyzed. RESULTS: 70.6% of the patients (n = 36) acquired wound infection. In 39% wounds were contaminated on day 1, whereas the mean length of duration until first pathogen detection was 9.1 ± 13.4 days after injury. In 37% polymicrobial colonization and 28% Pseudomonas were responsible for wound infections during hospitalization. In 45% the empirc antimicrobial therapy focussed on Gram positive strains did not cover the detected bacteria, according antimicrobial resistogram. It was significantly more often found in infections associated with Pseudomonas (p 0.02) or polymicrobial wound infections. CONCLUSIONS: This epidemiologic study reveals a pathogen shift from Gram-positive to Gram-negative strains with high incidence of Pseudomonas and polymicrobial infections in sub-/total major traumatic amputations. Therefore, empiric antimicrobial treatment historically focussing on Gram-positive strains must be adjusted. We recommend the use of Piperacillin/Tazobactam for these injuries. As soon as possible antimicrobial treatment should be changed from empiric to goal directed therapy according to the microbiological tests and resistogram results

    Prolonged Application of Continuous Passive Movement Improves the Postoperative Recovery of Tibial Head Fractures: A Prospective Randomized Controlled Study

    Get PDF
    Background and Purpose. Tibial head fracture (THF) rehabilitation is still a challenge in clinical practice. Short-term use of continuous passive motion (CPM) postoperatively for THFs can increase knee range of motion (ROM) immediately, and its effect on enhanced rehabilitation also ended when the CPM application was discontinued. The aim of this study was to investigate the effect on the recovery of prolonged use of CPM in the postoperative treatment of THFs. Methods. 60 patients with THFs were randomly and equally divided into the CPM group and non-CPM group. Both groups immediately received CPM and conventional physical therapies during hospitalization. After discharge, the non-CPM group was treated with conventional physical therapy alone, while the CPM group received conventional physical training in combination with CPM treatment. At 6 weeks and 6 months postoperatively, the primary outcome which was knee ROM and the secondary outcome which was knee functionality and quality of life were evaluated. Results. The CPM group had a significantly increased ROM at both follow-up time points. The Knee Society Score, UCLA activity score, and the EuroQoL as well as the pain analysis showed significantly better results of the CPM group than the non-CPM group. Conclusions. The prolonged application of CPM therapy is an effective method to improve the postoperative rehabilitation of THFs

    Microbiological pathogen analysis in native versus periprosthetic joint infections: a retrospective study

    Get PDF
    Background The presence or absence of an implant has a major impact on the type of joint infection therapy. Thus, the aim of this study was the examination of potential differences in the spectrum of pathogens in patients with periprosthetic joint infections (PJI) as compared to patients with native joint infections (NJI). Methods In this retrospective study, we evaluated culture-positive synovial fluid samples of 192 consecutive patients obtained from January 2018 to January 2020 in a tertiary care university hospital. For metrically distributed parameters, Mann–Whitney U was used for comparison between groups. In case of nominal data, crosstabs and Chi-squared tests were implemented. Results Overall, 132 patients suffered from periprosthetic joint infections and 60 patients had infections of native joints. The most commonly isolated bacteria were coagulase-negative Staphylococci (CNS, 28%), followed by Staphylococcus aureus (S. aureus, 26.7%), and other bacteria, such as Streptococci (26.3%). We observed a significant dependence between the types of bacteria and the presence of a joint replacement (p < 0.05). Accordingly, detections of CNS occurred 2.5-fold more frequently in prosthetic as compared to native joint infections (33.9% vs. 13.4% p < 0.05). In contrast, S. aureus was observed 3.2-fold more often in NJIs as compared to PJIs (52.2% vs. 16.4%, p < 0.05). Conclusion The pathogen spectra of periprosthetic and native joint infections differ considerably. However, CNS and S. aureus are the predominant microorganisms in both, PJIs and NJIs, which may guide antimicrobial therapy until microbiologic specification of the causative pathogen

    Identification of a contemporary human parechovirus type 1 by VIDISCA and characterisation of its full genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Enteritis is caused by a spectrum of viruses that is most likely not fully characterised. When testing stool samples by cell culture, virus isolates are sometimes obtained which cannot be typed by current methods. In this study we used VIDISCA, a virus identification method which has not yet been widely applied, on such an untyped virus isolate.</p> <p>Results</p> <p>We found a human parechovirus (HPeV) type 1 (strain designation: BNI-788st). Because genomes of contemporary HPeV1 were not available, we determined its complete genome sequence. We found that the novel strain was likely the result of recombination between structural protein genes of an ancestor of contemporary HPeV1 strains and nonstructural protein genes from an unknown ancestor, most closely related to HPeV3. In contrast to the non-structural protein genes of other HPeV prototype strains, the non-structural protein genes of BNI-788st and HPeV3 prototype strains did not co-segregate in bootscan analysis with that of other prototype strains.</p> <p>Conclusion</p> <p>HPeV3 nonstructural protein genes may form a distinct element in a pool of circulating HPeV non-structural protein genes. More research into the complex HPeV evolution is required to connect virus ecology with disease patterns in humans.</p

    The photoelectric effect in external fields

    Get PDF
    Atoms and negative ions interacting with laser photons yield a coherent source of photoelectrons. Applying external fields to photoelectrons gives rise to interesting and valuable interference phenomena. We analyze the spatial distribution of the photocurrent using elementary quantum methods. The photoelectric effect is shown to be an interesting example for the use of coherent particle sources in quantum mechanics.Comment: Contribution to the Einstein special issue, slightly updated reference

    Individual Effector/Regulator T Cell Ratios Impact Bone Regeneration

    Get PDF
    There is increasing evidence that T lymphocytes play a key role in controlling endogenous regeneration. Regeneration appears to be impaired in case of local accumulation of CD8+ effector T cells (TEFF), impairing endogenous regeneration by increasing a primary "useful" inflammation toward a damaging level. Thus, rescuing regeneration by regulating the heightened pro-inflammatory reaction employing regulatory CD4+ T (TReg) cells could represent an immunomodulatory option to enhance healing. Hypothesis was that CD4+ TReg might counteract undesired effects of CD8+ TEFF. Using adoptive TReg transfer, bone healing was consistently improved in mice possessing an inexperienced immune system with low amounts of CD8+ TEFF. In contrast, mice with an experienced immune system (high amounts of CD8+ TEFF) showed heterogeneous bone repair with regeneration being dependent upon the individual TEFF/TReg ratio. Thus, the healing outcome can only be improved by an adoptive TReg therapy, if an unfavorable TEFF/TReg ratio can be reshaped; if the individual CD8+ TEFF percentage, which is dependent on the individual immune experience can be changed toward a favorable ratio by the TReg transfer. Remarkably, also in patients with impaired fracture healing the TEFF/TReg ratio was higher compared to uneventful healers, validating our finding in the mouse osteotomy model. Our data demonstrate for the first time the key-role of a balanced TEFF/TReg response following injury needed to reach successful regeneration using bone as a model system. Considering this strategy, novel opportunities for immunotherapy in patients, which are at risk for impaired healing by targeting TEFF cells and supporting TReg cells to enhance healing are possible
    • …
    corecore